
Visualizing Developers Interactions
with the IDE

Master’s Thesis submitted to the

Faculty of Informatics of the Università della Svizzera Italiana

in partial fulfillment of the requirements for the degree of

Master of Science in Informatics

Software Design

presented by

Lorenzo Baracchi

under the supervision of

Prof. Michele Lanza
co-supervised by

Roberto Minelli

June 2014

I certify that except where due acknowledgement has been given, the work pre-
sented in this thesis is that of the author alone; the work has not been submitted
previously, in whole or in part, to qualify for any other academic award; and the
content of the thesis is the result of work which has been carried out since the
official commencement date of the approved research program.

Lorenzo Baracchi
Lugano, 16 June 2014

i

To whom they loved me,
who I would never love back enough.

To whom they hated me,
who I would never hate back enough.

iii

iv

Much learning does not teach
understanding.

Heraclitus

v

vi

Abstract

Software developers use Integrated Development Environments (IDEs) to cope with
the complexity of editing, navigating and understanding software artifacts. IDEs
integrate different tools like editors, debuggers, and version control system.

Analyzing the interactions developers have with IDEs is a first step towards
building better IDEs that enhance software development processes from the per-
spective of the software developer himself.
We built the tool HACKNEYED, that provides a set of visualizations about the
behavior of software developers while using IDEs. HACKNEYED leverages develop-
ment sessions recorded with DFLOW. Using them we can analyze the behavior of
software developers. By means of these visualizations we discovered some insights
on the habits and actions of software developers. For example we have evidence
that developers spend considerably more time in understanding software artifacts
than editing them.

vii

viii

Acknowledgements

Among all the pages of this document this is the most challenging to write. How
can sole words be enough to this purpose?

I want to start by thanking the whole REVEAL group: It has been a pleasure
knowing and working with you. In particular, Roberto for his useful help on this
hard work!

Professor Lanza, because of his teachings that go far beyond the ”limited scope”
and concepts of this engineering field.
Thank you!

My classmates and Friends, met during these years of studying.
Walking on this path would have been harder without you!

My Whole Family. They never stopped believing in me and they always supported
me.
I wish I could be better for you all.

To my girlfriend Ebrisa, who carries the burden of loving and understanding me.
I could not imagine a more demanding commitment in life!

To the many I forgot to mention here.

To those who helped me growing up, for the good or for the bad.
I will not forget!

ix

x

Contents

Contents xi

List of Figures xiii

List of Tables xv

1 Introduction 1
1.1 Contributions . 2
1.2 Structure of the Document . 2

2 Interaction Data 5
2.1 DFlow and interaction data . 5
2.2 Data interpretation . 7

2.2.1 Window Events . 7
2.2.2 Development Events . 9

2.3 Development activities . 10
2.4 Dataset . 12
2.5 Discussion . 12

3 HacknEyed 13
3.1 The Problem . 13
3.2 Visualizations . 15

3.2.1 Tree View . 15
3.2.2 Window Activity View . 18
3.2.3 Activity Views . 21
3.2.4 Workspace View . 23
3.2.5 Combined Views . 25

3.3 Interaction with the visualizations 26
3.4 Metrics . 28
3.5 Wrap-Up . 29

xi

xii Contents

4 Telling development stories with HacknEyed 31
4.1 Analysis . 31

4.1.1 An Uninterrupted Session . 32
4.1.2 An Interrupted Session . 37
4.1.3 Wrap-Up . 42

4.2 Categorization . 43
4.2.1 Principles of Characterization 43
4.2.2 Characterization of Development Sessions 45

4.3 Discussion . 49

5 Related Work 51
5.1 Behavior of Developers . 51
5.2 Interaction with IDEs . 52
5.3 Reverse Engineering . 53
5.4 Software Visualization . 54
5.5 Summing up . 54

6 Conclusions 55
6.1 Summary . 55
6.2 Future Works . 56
6.3 Epilogue . 57

A The architecture of HacknEyed 59

Bibliography 61

Figures

2.1 Interpretation of an open window event 7
2.2 Interpretation of an activation window event 7
2.3 Interpretation of a resize/move window evens 8
2.4 Interpretation of a minimize window event 8
2.5 Interpretation of an expanding window event 8
2.6 Interpretation of a close window event 9
2.7 Interpretation of edit events . 9
2.8 Interpretation of inspection events 10
2.9 Interpretation of navigation events 10
2.10 Example of DFLOW events . 11
2.11 Example of DFLOW computed activities 11

3.1 A typical PHARO Environment . 14
3.2 A typical Eclipse Environment . 14
3.3 Concepts for the Tree View . 15
3.4 Edit activities example . 16
3.5 An example of a tree view . 17
3.6 An example of a single tree . 17
3.7 Conceptual representation of the position of windows 18
3.8 An example of main and short-windows 19
3.9 Example of the lines for explicit and implicit subsessions, and commits 19
3.10 An example of a Window Activity View 20
3.11 Conceptual representation of the Activity view 21
3.12 Conceptual representation of the Cumulative Activity view 21
3.13 Example of the Activity view . 22
3.14 Example of the Cumulative Activity view 22
3.15 Conceptual representation of the Workspace View 23
3.16 Examples of workspace view . 24
3.17 First attempt of a combined view . 25
3.18 Example of a combined view . 25
3.19 Examples of tooltip and code browsing on the tree visualization . . . 26

xiii

xiv Figures

3.20 Example of tooltip and inspection on windows 27

4.1 Cumulative activities for the Uninterrupted Session 32
4.2 Windows and activity visualization for the Uninterrupted Session . . 33
4.3 Tree view with editings for the Uninterrupted Session 34
4.4 Tree view with inspections for the Uninterrupted Session 35
4.5 Tree view with understandings for the Uninterrupted Session 36
4.6 Workspace of the developer at two different times. 36
4.7 Cumulative activities for the Fragmented Session 37
4.8 Windows and activity visualization for the Interrupted Session . . . 38
4.9 Curing the window plague . 39
4.10 Part of tree view for the Interrupted Session 40
4.11 Part of tree view for the Interrupted Session 41
4.12 Part of tree view for the Interrupted Session 41
4.13 Workspace of the developer at two different times. 42
4.14 Example of single-track window . 43
4.15 Example of multi-track window . 43
4.16 Example of fragmented track window 44
4.17 Example of sequential flow . 44
4.18 Example of ping-pong flow . 45

A.1 Architecture of HACKNEYED . 60

Tables

2.1 List of events that can be recorded in DFLOW. 6
2.2 Dataset grouped by developers . 12

3.1 Description of metrics . 28

4.1 Categorized sessions . 45
4.2 Categorized development sessions for developers 46
4.3 Average times for developers . 46
4.4 Activity times for the categorized sessions 48
4.5 Sessions divided by session type . 48

xv

xvi Tables

Chapter 1

Introduction

In The Mythical Man Month [Bro95], Frederick Brooks describes the process of
Software Development as:

The programmer like the poet, works only slightly removed from pure
thought-stuff. He builds his castles in the air, from air, creating by
exertion of the imagination. Few media of creation are so flexible, so
easy to polish and rework, so readily capable of realizing grand conceptual
structures.

This flexibility is a double-edge sword for the developer, who can build whatever
his imagination allows him to build. Although he has to deal with the complexity
of navigating, understanding, and remembering these creations.
Difficulties increase when a developer needs to work not only with the creation of
his own imagination, but has to deal with the imagination of other developers. It
is the common case of any software product that is built today that developers do
not work alone, but cooperate with other developers in teams ([GGD07]).

Integrated Development Environments (IDEs) are software programs that inte-
grate multiple tools used by developers like editors, debuggers and version control
systems in a single environment. IDEs aim at lightening the complexity of dealing
with the flexibility of software systems. Nevertheless, even using these tools, much
of the complexity of software development is left to the developer.
There is the need to provide developers with facilities that help them to under-
stand software system, and enhance their productivity in building or restructuring
software artifacts.

We present an approach to analyze and understand the behavior of software
developers. We use visualization to better understand the interaction of developers
with the IDE. We believe that, by analyzing how developers use the current tools,
we can gather information to understand which are the challenges that they face,

1

2 1.1 Contributions

and provide some useful insights to build better tools for developers.

Researches have tried to approach this problem and proposed some solutions.
LaToza et al. [LVD06] found that the biggest problems in understanding code for
developers are: understand the rationale behind the code, understand the code that
someone else wrote, and understand the history of a piece of source code. Murphy
et al. [MKF06] studied how developers invoke commands in the IDE. They found
that a large percentage of commands is invoked by key bindings. LaToza and Myers
[LM10] tried to assess how much time developers spend in understanding code, by
using surveys, laboratory and field observation. Minelli and Lanza [ML13b] pro-
posed an approach to visualize the navigation flow of developers in the IDE.

In this thesis we present a new visual approach to better understand how soft-
ware developers interact with IDEs. By means of visualizations we analyze the
behaviors of different developers to gather insights of the problems they face while
working on software systems.

1.1 Contributions
The main contributions of this thesis can be summarized as follows:

• A set of interactive visualizations to better understand the developers’ behav-
ior.

• A categorization of development sessions based on the different interactions
of the developers with the IDE.

• An empirical investigation about the time software developers spend during
various development session.

• A study of the interactions of developers with the Pharo IDE.

1.2 Structure of the Document
The remainder of this document is structured as follows:

• Chapter 2 explains how we process the raw data obtained from DFLOW to
obtain a format more suitable for the visualizations .

• Chapter 3 introduces HACKNEYED, the tool we developed to support the
analysis, and describes the visualizations.

• Chapter 4 demonstrates how to use the tool HACKNEYED to analyze devel-
opment sessions and presents our findings.

3 1.2 Structure of the Document

• Chapter 5 discusses the related work and highlights the differences with our
approach.

• Chapter 6 summarizes our work and discusses future work.

4 1.2 Structure of the Document

Chapter 2

Interaction Data

In this chapter we describe interaction data recorded by DFLOW [ML13a], a tool
that observes and records the interactions of developers with the IDE (section 2.1).
Section 2.2 describes how we pre-process the data to build the visualizations.
In section 2.3 we explain how DFLOW estimates development activities from the
recorded events. In section 2.4 we present the dataset used for the analysis.

2.1 DFlow and interaction data
DFLOW is a tool that silently observes and records the workflow of developers inside
the IDE while performing software engineering tasks [ML13a]. In DFLOW there are
two main classes of events: UI events (interactions with the IDE windows) and
development events (like editing or inspecting the source code). Every DFLOW
event has the timestamp representing the exact time when it has been triggered.
UI events happen when a developer opens, activates, resizes, collapses, expands, or
closes a window.
For development events we mean when the developer edits, inspects, or navigates
a program entity. Editing events are recorded by DFLOW when the user performs
a modification of the code or the image, while navigation events happen when the
user jumps from browsing an artifact to browse another artifact. Inspection events
happen when the developer inspects an object. Table 2.1 shows the complete list
of events that can be recorded by DFLOW.

5

6 2.1 DFlow and interaction data

ID Description
N1 Opening a Finder UI
N2 Selecting a package in the system browser
N3 Selecting a method in the system browser
N4 Selecting a class in the system browser
N5 Opening a system browser on a method
N6 Opening a system browser on a class
N7 Selecting a method in the Finder UI
N8 Starting a search in the Finder UI
I1 Inspecting an object
I2 Browsing a compiled method
I3 Do-it on a piece of code (e.g. workspace)
I4 Print-it on a piece of code (e.g. workspace)
I5 Stepping into in a debugger
I6 Run to selection in a debugger
I7 Exiting from an active debugger
I8 Proceeding in a debugger
I9 Browsing full stack in a debugger
I10 Stepping over in a debugger
I11 Entering a full debugger
I12 Browsing the hierarchy of a class
I13 Browsing all implementors of a method
I14 Browsing all senders of a method
I15 Closing the current Smalltalk image
I16 Saving the current Smalltalk image as...
I17 Browsing the version control system
I18 Browsing the stack trace in the debugger
I19 Browse versions of a method
E1 Creating a new class
E2 Adding/removing instance variables from a class
E3 Removing a method from a class
E4 Adding a method in a class
E5 Remove a class from the system
E6 Automatically creating accessors for a class
W1,2 Opening/Closing a window
W3 Activating a window, i.e. window in focus
W4,5 Resizing/Moving a window
W6,7 Collapsing/Expanding a window, i.e. minimize/maximize

Table 2.1. List of events that can be recorded in DFLOW.

7 2.2 Data interpretation

2.2 Data interpretation
To understand the interaction of developers with the IDE we want to analyze the
activities that the developer is performing at a certain time. Since DFLOW only
records the timestamp when an event is triggered, we need to estimate the dura-
tion of activities from the timestamp of events. We developed different estimation
models depending on the type of events generated by DFLOW: If they are events on
the windows or events generated by the code editor.

2.2.1 Window Events
We estimate the duration of activities by considering two consecutive timestamps.
We show 6 basic examples, for each type of window event, in which we consider
two consecutive events respectively at time t1 and t2. The examples show:

1. Open: when at time t1 there is an open window event, we assign a small
duration to the open event (i.e., 1 second), then we consider that window as
active until the next event at time t2, as in Figure 2.1.

t1 t2

Open Active

Figure 2.1. Interpretation of an open window event

2. Activation: when at time t1 there is an activation event, we consider the
window on which the event happens active until the next event at time t2, as
in Figure 2.2.

t1 t2

Active

Figure 2.2. Interpretation of an activation window event

3. Resize/Move: when at time t2 there is a resize or move window event, we
assign a small duration to that event (e.g. 1 second), then we consider that

8 2.2 Data interpretation

window as active until the next event, as in Figure 2.3. This means that the
user changed the size or the position of the window, then continued to look
at it. It is possible that DFLOW records a series of consecutive move or resize
events, in this case we consider the action of resize starting at the first event
and ending at the last event.

t1 t2

Move/Resize Active

Figure 2.3. Interpretation of a resize/move window evens

4. Minimize: when at time t2 there is a minimize event, we assign a small
duration to the minimize event (e.g. 1 second). We know that starting from
t2 the window is not active and not visible on the screen until it is expanded,
as in Figure 2.4.

t1 t2

Collapse/Expand Active

Figure 2.4. Interpretation of a minimize window event

5. Expand: when at time t2 there is an expand window event, we assign a small
duration to the expand event (e.g. 1 second), then we consider that window
as active until the next event, as in Figure 2.5.

t1 t2

Collapse/Expand Active

Figure 2.5. Interpretation of an expanding window event

9 2.2 Data interpretation

6. Close: when at time t2 there is a close event, we assign a small duration to
the close event, e.g. 1 second, as in Figure 2.6 .

t1 t2

Close Active

Figure 2.6. Interpretation of a close window event

2.2.2 Development Events

In this section we describe the first naïve approach we devised to estimate devel-
opment activities from the list of events. This method is rather simple and it is
still used in one visualization of HACKNEYED: the Tree Visualization, which was
the first attempt of visualization for this work.

There are three important events on the editor that we can use for our analysis:
editing, inspection, and navigation. From those events we need to estimate the
understanding activities. We consider an understanding activity the time in which
the developer is reading the code with the purpose of understanding it. Intuitively,
understanding activities can be defined as the time in which the developer is doing
neither editing, nor inspection, nor navigation.

We show 3 examples, in which we consider three consecutive events at times t1,
t2 and t3.

1. Editing: when at time t2 there is a recording of an editing event, we know
that the changes happened between the the time t2 and the previous event
at time t1, therefore we can consider the duration of the editing activity from
time t1 to time t2, i.e. ∆E = t2 − t1 where ∆E is the duration of the editing
activity (Figure 2.7).

t1 t2 t3

Figure 2.7. Interpretation of edit events

10 2.3 Development activities

2. Inspection: when at time t2 there is a recording of an inspection event, we
know that the developer is looking at the state of the object between the time
t2 and the subsequent time t3. Therefore we consider the duration of the
inspection activity from time t2 to time t3, i.e. ∆I = t3 − t2 where ∆I is the
duration of the editing activity (Figure 2.8).

t1 t2 t3

Figure 2.8. Interpretation of inspection events

3. Navigation: when at time t2 there is a recording of a navigation events, we
know that the developer navigated to a particular artifact and then looked
at it. For this reason we consider a small duration for the navigation (e.g. 1
second) and then from that time until the subsequent event t3 we consider it as
an understanding activity, i.e. ∆U = t3−t2−∆N where ∆U is the duration of
the understanding activity and ∆N is the duration of the navigation activity
(Figure 2.9).

t1 t2 t3

Figure 2.9. Interpretation of navigation events

2.3 Development activities
With DFLOW is possible to estimate the duration of activities in a better way.
These estimations were not yet available when we first created the interpretation
of events described in section 2.2. In this section we briefly describe how DFLOW
estimates the duration of activities.

Figure 2.10 shows an example of interaction history of DFLOW. Where N cor-
responds to a navigation event, E is an editing, and I is an inspection event.

Navigation: Navigation events correspond to mouse clicks, thus they require a
small amount time. DFLOW generates, from navigation events, navigation activities

11 2.3 Development activities

t1 t2 t3 t4 t5 t6

N N N NE I

Figure 2.10. Example of DFLOW events

that have a fixed time duration: ∆N . The default value for ∆N is 0.5 seconds.

Editing: DFLOW records editing events at the end of the editing. DFLOW denotes
this time as end(Ei). DFLOW assumes that the duration of the edit (∆Ei) is a
fraction (PE) of the time interval between the end time of the previous activity
end(Ei−1) and the end time of Ei:

∆Ei = PE · (end(Ei) − end(Ei−1))

Inspection: DFLOW records inspection events at the start of the inspection ac-
tivity: start(Ii). DFLOW assumes that the duration of the inspection (∆Ii) is a
fraction (PI) of the time interval between start(Ii) and the start time of the fol-
lowing event start(Ii+1):

∆Ii = PI · (start(Ii+1) − start(Ii))

Understanding: DFLOW then defines as understanding activities, the time gaps
that remain after the computation of the navigation, editing and inspecting activ-
ities.

t1 t2 t3 t4 t5 t6

N N N NE I

Figure 2.11. Example of DFLOW computed activities

Figure 2.11 shows an example of computed activities starting from the events
of Figure 2.10. White boxes represent navigation activities, red boxes represent
editing activities, and blue boxes represent inspection activities. In yellow it is
displayed the understanding time.

12 2.4 Dataset

2.4 Dataset
To analyze the interactions of developers with the IDE, we have available about 200
development sessions recorded with the tool DFLOW. These development sessions
were recorded by 7 different developers while doing their normal work. Table 2.2
shows simple metrics for the development sessions analyzed.

Number of Average Events
Developer Sessions Duration Navigation Inspect Edit Total
Aerys 12 1,906 21,617 183 2,458 24,258
Davos 3 16 393 157 24 574
Luwin 65 102 20,468 2,157 2,091 24,716
Mace 6 1,010 2,183 353 1,196 3,732
Robb 73 272 35,801 2,962 3,316 42,079
Tommen 7 282 6,862 337 472 7,671
Yoren 11 1,888 7,234 486 526 8,246

Table 2.2. Dataset grouped by developers

2.5 Discussion
In this chapter we described the approach used to transform the data available in
DFLOW in a format that is easier to use for visualization purpose. The data hereby
described are used in HACKNEYED to create the visualizations.

In subsection 2.2.2 and section 2.3, we described two different approaches to
extract developer activities from a collection of events recorded by DFLOW for a
development session. Section 2.3 tries to estimate the editing time as a fraction of
the time elapsed between the two events. The interpretation in subsection 2.2.2
would set an upper bound on the time used for editing.
As as consequence the technique described in subsection 2.2.2 would estimate larger
times for editing and inspection activities, but lower times for understandings ac-
tivities, respect to the times of activities computed with the estimation described
in section 2.3.

The estimation of development activities is the first step towards building the
visualizations of HACKNEYED. The next chapters describes in details the visualiza-
tion we developed.

Chapter 3

HacknEyed

The Oxford English Dictionary defines the term hackneyed as: Used so frequently
and indiscriminately as to have lost its freshness and interest; made trite and com-
monplace; stale. Everyday, developers face the problem of frequently repeat similar
activities [Wei85], like navigation through the source code to find a particular func-
tion call, or jumping back and forth between the debugger and the code editor to
understand the reasons of changes. Hence, we adopted this name for a tool whose
goal is to provide visualizations to understand the behavior of a developer inter-
acting with the IDE.

This chapter presents the problems of software developers, and introduces HACKNEYED:
the tool that generates the visualizations. Section 3.2 presents the visualizations
and section 3.3 describes how to interact with the visualizations. Finally section 3.4
presents the metrics.

3.1 The Problem

Figure 3.1 shows a typical PHARO environment during a development session.
PHARO1 is a pure object-oriented programming language and environment based
on the Smalltalk programming language. Differently from most modern IDEs its
environment is based on windows instead of tabs. In a typical development ses-
sion, developers open multiple editor windows, inspector windows, workspaces, and
version control windows at the same time to reveal relationships among software
artifacts. Doing this they may find themselves opening many new windows or tabs
in their IDEs, as in Figure 3.1. Researches call this phenomenon: Window Plague
[RND09]. The Window Plague can occur both on window based IDEs, like PHARO,
and tab based IDEs (see Figure 3.2), like Eclipse.

1See http://www.pharo.org/

13

http://www.pharo.org/

14 3.1 The Problem

Figure 3.1. A typical PHARO Environment

Figure 3.2. A typical Eclipse Environment

To better understand how developers use the User Interface (UI) of the IDE we
devised a visual approach that presents interactions data from different perspective.
In the remainder of this chapter we present HACKNEYED, the tool that implements
our approach, and the visualizations it offers.

By means of visualizations, we devised in HACKNEYED, we can analyze this
problem and find some hints on how programmers use the PHARO IDE.

15 3.2 Visualizations

3.2 Visualizations

In this section we present the catalogue of visualizations offered by HACKNEYED.
We discuss what they represent and how they are generated.

3.2.1 Tree View

Visualization Principles
The purpose of the Tree View is to show the activities of a developer during a
development session displayed in form of a tree. The view is built following the
structural relationship among the software artifacts on which the activities of the
developer happen. Figure 3.3 shows a conceptual representation illustrating the
structural relationship used to build the Tree View. Class A1 and A2 belong to the
category A. Methods m1, m2 and m3 are from class A1, while method m6 is from
class B1, under category B.

category A

class A1 class A2

category B

m1 m2 m3 m4 m5

class B1

m6

activities

Level 1:

categories

Level 2:

classes

Level 3:

methods

Figure 3.3. Concepts for the Tree View

We consider the following
program entities: methods,
classes, and categories (pack-
ages). The forest will have as
root nodes only categories, on
the second level there are the
classes, followed by the meth-
ods on the third level of the
tree. We show only the ar-
tifacts that a developer exam-
ined during a development ses-
sion, therefore each category
will have as children only those
classes that belong to that cat-
egory and are involved in the
session. The same happens for classes and their methods.

Every node in the tree contains a list of activities that the developer performed
on that artifact. The height of each activity is proportional to the time spent. We
distinguish four types of activities: navigation, understanding, inspection and edit-
ing. Each activity has a color associated to its type: green for navigation activities,
red for understanding activities and yellow for inspection activities. Navigations
correspond to clicks of the mouse by the developer, inspection happens when the
developer inspects the state of an object at runtime, editing happens when the de-
veloper saves the changes on an artifact. Understanding is when the developer is
not doing one of the previously mentioned activities, and he is just looking at the
code.

Editing activities have a different representation with respect to other activities.

16 3.2 Visualizations

Indeed they have different colors and widths, depending on code size and changes,
while the height represents the time spent by the developer on the activity, as for the
others. The color of an editing activity is computed on a gray-scale, depending on
the size of the code modified in that activity. To implement this we assign the color
white to the minimum code size for the considered artifact, and the color black
to the maximum code size for that artifact. This is possible since every editing
event in DFLOW stores the resulting code after the editing has been performed.
The width of the activity is computed based on the impact of a change on the code
of the artifact. With impact of a change, we mean the difference on the code size
before and after an edit event occurs. For example adding 4 characters to a method
will result in an activity with width 4, removing 6 characters from a method will
result in an activity with width 6. Figure 3.4 shows an example of different editing
events on a Smalltalk method and the resulting activities on the view:

edit1

edit2

edit3

Figure 3.4. Edit activities example

sayHel lo :
^ ’ Hello ’

edit1

sayHel lo :
^ ’ Hel lo World ’

edit2

sayHel lo :
” i t says h e l l o ”
^ ’ Hel lo World ’

edit3

Example
Figure 3.5 shows an example of a Tree View generated by HACKNEYED. The figure
shows a list of 10 categories represented as trees. Figure 3.5 shows an example of a
single tree.

In Figure 3.5 we notice that among all the entities displayed only one method
has been edited by the developer. On this method edits happen at different times
and the first editing activity is the most important in term of code size changes
(the larger gray box).

17 3.2 Visualizations

Figure 3.5. An example of a tree view

Figure 3.6. An example of a single tree

In Figure 3.5 we see that the category at the root of the tree presents a lot
of navigation events. For this example, editing activities do not require a large
amount of time and do not have large impact regarding code size changes. There
are also editing activities on classes, which means that the developer modified the
definition of the object and not just the behavior.

18 3.2 Visualizations

3.2.2 Window Activity View
Visualization Principles
The Window Activity View shows the activities a developer performed on various
windows during a development session. Every window opened during the session
is displayed on an horizontal line, which has length equal to the time in which the
window was open. We distinguish two types of windows: main and short-windows.
Main windows are windows that have a lifetime greater that 1 minute, while short-
windows are windows that are opened and closed in less than a minute, we can see
them as windows containing additional information respect to the main windows
from which they are generated.

main window 1

main window 2

main window 3

main window 4

(a) Positioning of main windows

main window

short 1

short 2

short 3

(b) Positioning of short-windows

Figure 3.7. Conceptual representation of the po-
sition of windows

In Figure 3.7 we show a
conceptual representation of
the positioning for the Win-
dow Activity View, where Fig-
ure 3.7a shows the position-
ing of main windows and Fig-
ure 3.7b shows the positioning
of short windows.
Every main window occupies
a single vertical coordinate on
the visualization. Once a main
window takes a position, an-
other window can not use the
same vertical position, even if
their timespans do not over-
lap. Short windows are opened
and closed in a short period of
time, interrupting the workflow
of other windows. Therefore we
place the short windows under the window on which they have interrupted the work-
flow. A short window is placed in the first available vertical position below the main
window to which it belongs. As a consequence short windows can share the same
vertical position under the main window and a short window can be under either
a main or a short window.

Figure 3.8 shows an example of a main window together with its short windows
that are placed below it.

19 3.2 Visualizations

Open Active Move/Resize Collapse/Expand Close

ide window ide window

Figure 3.8. An example of main and short-windows

A window, over time, can be opened, closed, activated, resized, moved, collapsed
(minimized) and expanded. In our visualization we depict these information with
different colors on the timeline of the window. The timeline is a line representing
the time in which a window is alive: from the open event to the close event. We
draw open events in blue, closed in red, activated events in green, resized and
moved events in yellow, collapsed and expanded events in orange. We interpret
green bars as time where the developer is focusing his attention on that window.
We call windows that are not active or collapsed: idle windows. Idle windows are
shown with a thin grey line (see Figure 3.8). This line has an orange color when the
window is collapsed, which means that the window still exists, but is not displayed
anymore on the developers’ screen.

The visualization shows vertical lines in correspondence of subsessions. Subess-
esions are pauses of the session, when a developer momentarily stops working on
the software, and then restarts working, on the same session, after some time.

Figure 3.9. Example of the lines for explicit and
implicit subsessions, and commits

There are two types of subses-
sions: The explicit subsessions,
in which the developer explic-
itly stops the DFLOW recording
by using the interface, and the
implicit subsessions, in which
the developer does not stop the
recording and neither makes
any action for long time. We
show explicit subsessions as
light gray vertical lines, and
implicit subsessions as red ver-
tical lines. For every subsession
we show the pause time elapsed between the end of a subsession and the start of
the next one by means of a label above the vertical line representing the pause. In
the visualization we show blue vertical lines in the correspondence of the times at

20 3.2 Visualizations

which a developer committed the changes, in the versioning system, done during
the development session. Figure 3.9 shows examples of explicit and implicit subses-
sions, and the vertical lines for commit events. Moreover in the timeline of windows
it is possible to see where the developer did some changes, which are shown as red
dots (e.g. Figure 3.8).

Example
Figure 3.10 shows an example of a Window Activity View generated by HACKNEYED,
and highlights a detail of the top left corner of the example.

Figure 3.10. An example of a Window Activity View

In this example the developer uses a significant amount of different windows
across the session. There are few windows that exist for long time, but for most
of the time they are idle, i.e., not active. Two windows get minimized early in
the session and then forgotten. Overall, the interaction of the developer with the
windows looks fragmented.
The session lasts for about 18 hours but more than 15 hours are pauses between
subsessions. There are 4 pauses, two of which implicit. Towards half of the session
the developer committed the changes he made.

21 3.2 Visualizations

3.2.3 Activity Views
Visualization Principles

Figure 3.11 shows the conceptual representation for this visualization.

activity 1 activity 2 activity 3

10 minutes

activity duration

... activity n

session duration

activity n-1

0 10 20

subsession duration

Figure 3.11. Conceptual representation of the Ac-
tivity view

We devised two kinds of visual-
ization about activities of a de-
veloper over the time of a devel-
opment session. The first visu-
alization shows the various ac-
tivities that the developer per-
forms over time, this means
that if a developer is editing
the code for 5 minutes starting
from the 10th minute of devel-
opment, the view shows an editing activity of 5 minutes starting at that time.
Every activity has an associated color: Yellow represents understanding time, red
represents editing time, blue represents inspection time, and white represents nav-
igation time. In the visualization we also show a time axis, the title of the session
visualized and subsession intervals (the thick vertical lines).

time

duration

N

I

E

U

N

I

E

U

N

I

E

U

5

minutes

10

minutes

session

duration

u
n

d
e

rs
ta

n
d

in
g

 t
im

e

in
 1

st
 1

0
 m

in
u

te
s

u
n

d
e

rs
ta

n
d

in
g

 t
im

e

in
 a

ll
 s

e
ss

io
n

 d
u

ra
ti

o
n

...
5

minutes

10

minutes

Figure 3.12. Conceptual representation of the Cu-
mulative Activity view

The second visualization
shows the time of all the activ-
ities performed by a developer
up to a certain time in a cu-
mulative fashion. The first bar
represents the activities done in
5 minutes, the second bar rep-
resents the activities done in
10 minutes. Therefore, every
bar adds 5 minutes of activi-
ties to the previous bar, until
the end of the session. Fig-
ure 3.12 shows the conceptual
representation for this visual-
ization. Every bar is composed
of 4 elements, which are (from
bottom to top): a) N : navigation time. b) I : inspection time. c) E: editing
time. d) U : understanding time. The height of each element represents the overall
duration of a type of activity up to that time.

22 3.2 Visualizations

Example

Figure 3.13. Example of the Activity view

Figure 3.14. Example of the Cumulative Activity view

Figure 3.13 shows an example of an activity view. Figure 3.14 shows an example
of a cumulative activity view.

The session represented in Figure 3.13 for the first 10 minutes is mostly dom-
inated by understanding time. The frequency of editing events starts to increase
from minute 10. Starting from minute 20 until the end of the session there is the
highest concentration of editing events. This means that the developer gathered
knowledge at the beginning of the session and edited mostly at the end.

In Figure 3.14 we clearly see that the overall time spent by the developer in
editing is around a fourth of the time spent in understanding. The total editing
and inspecting time are similar to each other, but the inspection time grows more
at the beginning of the session, while the editing time grows more toward the end.

23 3.2 Visualizations

3.2.4 Workspace View
Visualization Principles
The Workspace View is an interactive visualization of the workspace of the developer
during a development session. As workspace we intend the IDE environment to
which the developer interacts.

Figure 3.15. Conceptual representation of the Workspace View

Figure 3.15 shows a conceptual representation of the visualization. On the
left there is an example of windows inside PHARO IDE, on the right there is the
correspondent visualization of the same windows. Both have four windows in the
workspace, of which three overlap with themselves. Every window present in the
developer workspace is depicted as a gray rectangle with the same size and position
of the original window in the IDE. When two or more windows overlap the color
of the overlapping area becomes darker. The more a color is darker the more that
particular position in the screen contains information for the developer. Hence
white areas indicate the absence of windows, light grey areas indicate the presence
of few windows, darker areas indicate the presence of a lot of overlapping windows.

In the visualization we show all the windows that are present in the workspace
of the developer at a particular time. The user can follow the evolution of the
workspace of the developer by changing the time currently displayed. Using this
information it is possible to understand how the developer uses the space in the
IDE, like: where are placed the most windows or how much windows are moved or
resized. This is a useful information to improve window management. For example,
a developer that tends to have a messy workspace with many overlapping windows,
can benefit of a window manager, while a developer that tends to organize the
space following some patterns, could be hampered by a window manager that uses
a different approach.

24 3.2 Visualizations

Example

(a) Example of workspace view towards the beginning of a session

(b) Example of workspace view towards the end of a session

Figure 3.16. Examples of workspace view

Figure 3.16a and Figure 3.16b show an example of the workspace view on the
same development session at different times.

We see that the developer has an higher number of windows towards the end
of the session respect to the number of windows at early times in the session. The
developer prefers to maintain windows at the top left corner of the screen, while
the bottom right of the screen has fewer windows. It remains to be investigated if
in this session there exists main windows, and in which position on the screen they
are.

25 3.2 Visualizations

3.2.5 Combined Views
HACKNEYED also offers some combined visualizations to enhance the analysis and
understanding of development sessions. Combined visualization are visualization
that combine two of the previous discussed visualizations: Window Activity View
and Activity view.

Figure 3.17. First attempt of a combined view

Figure 3.17 shows the first attempt to create a combined view were the window
view is placed on top of the activity view, in two different windows.

Figure 3.18. Example of a combined view

Figure 3.18 shows an example of a combined visualization where, from top to
bottom, there are the window view and the activity view (the combined view also
has metrics that are not displayed in the image). Using this visualization is possible
to analyze both the activities done by the developer and the actions on the windows,
at the same time. It is also possible to look at some metrics about the development
session.

26 3.3 Interaction with the visualizations

3.3 Interaction with the visualizations
The visualizations described in section 3.2 are interactive, which means that the
user can obtain more information by performing actions on them.
In this chapter we describe some interactions that are possible to perform with the
visualizations of HACKNEYED.

Basic interaction: All visualizations support basic interactions, such as: pan
(changing the view angle), zoom-in and zoom-out.

Tree View interactions: On the tree view if the user hovers with the mouse on
an event, the view will show a tooltip containing some information:

• Duration of the event and start time of the event.

• Type of the event.

• Code size of the artifact at that time.

• Code difference of the artifact with respect to its previous size.

By clicking on an event the user can see, in an appropriate window, the code of the
artifact at that moment.
In Figure 3.19 we show examples of interactions on this view.

(a) The tooltip on a tree event
(b) The code of an artifact shown on
a tree event

Figure 3.19. Examples of tooltip and code browsing on the tree visualization

Window Activity View interactions: When a user hovers on a window timeline,
the view shows a tooltip displaying the window id and the class of window. The
window id is an identifier used in PHARO to identify each single window, while
the window class is a classification of the type of windows, for example all editor
windows belong to the same class and all the inspector windows belong to another
class.
When the user clicks on a window timeline it shows a standard PHARO inspector,

27 3.3 Interaction with the visualizations

in this way the user can interact with the object as any other Smalltalk object; for
example he can inspect all the events, or call a method on the window object. In
Figure 3.20 we show an example of the interaction on the window activity view.

(a) The tooltip on a window event
(b) The inspection on a window
timeline

Figure 3.20. Example of tooltip and inspection on windows

Workspace View interactions: The view shows all the windows open at a certain
time in the development session. The user can change the time visualized by the
view by clicking on the forward or backward button. It is then possible to see how
the workspace of the developer evolves during the session.

Combined View interactions: Combined views inherit the same interactions that
are possible in the respective single views. Furthermore they introduce the possi-
bility to open different visualizations starting from them.
They also provide means to tweak some parameter used to create the visualization,
such as how much time is considered idle time to create an implicit subsession. We
use this parameter to compute the implicit idle time of pauses during the session.
For example if the user specifies a 10 minutes of idle time, we process the session
to find period of at least 10 minutes where the developer did not interact with the
IDE. We then consider that time as a pause time.

28 3.4 Metrics

3.4 Metrics

This section introduces the metrics that integrate with the various visualizations
introduced in section 3.2. We use metrics to enhance the information that can be
gathered by inspecting the visualizations.

The metrics we use are reported in the Table 3.1.

Metric Description
Subsessions The total number of subsessions that the con-

sidered development session has.
Explicit Subsessions The number of explicit subsessions of the devel-

opment session considered.
Implicit Subsessions The number of implicit subsessions of the devel-

opment session considered.
Duration The overall duration of the development session

considered.
Effective Duration The duration of the session excluding the time

of pause between subsessions.
Explicit Pause Time The pause time between explicit subsessions.
Implicit Pause Time The pause time between implicit subsessions.
Windows The overall number of windows opened during

the development session.
Navigations The number of navigations performed by the de-

veloper during the considered session.
Inspections The number of inspections performed by the de-

veloper during the considered session.
Editings The number of editings performed by the devel-

oper during the considered session.
Time of Navigation The overall time of navigation in the considered

session.
Time of Inspecting The overall time of inspecting in the considered

session.
Time of Editing The overall time of editing in the considered ses-

sion.
Time of Understanding The overall time of understanding in the consid-

ered session.

Table 3.1. Description of metrics

29 3.5 Wrap-Up

3.5 Wrap-Up
In this chapter we briefly presented the architecture of HACKNEYED. We described
the various visualizations that HACKNEYED can produce, which are:

• Tree visualization

• Window Activity View

• Activity Views

• Workspace View

• Combined Views

We also described the metrics that integrate information in the various visualiza-
tions.

In the next chapter we use the visualization we described to perform analyses
of development sessions. We discuss examples of analysis on two development
sessions and we present a categorization of development sessions that is based on
the interaction of the developer with the IDE.

30 3.5 Wrap-Up

Chapter 4

Telling development stories with
HacknEyed

In this chapter we present two analyses of development sessions performed with
HACKNEYED (section 4.1). We present a categorization of development sessions
based on the interaction of the developer with the windows in the IDE, and will
report findings and statistics about the analyses we performed (section 4.2).

4.1 Analysis
In this section we present some examples of analyses of development sessions per-
formed using HACKNEYED. We collected about 200 development sessions from 7
developers. Here we analyze two sessions presenting different characteristics and
from two different developers. For privacy issues, we will refer to developers with
fictional names.

31

32 4.1 Analysis

4.1.1 An Uninterrupted Session
The first session we analyze is a session from a developer to which we will refer as
Luwin. The session lasts for about an hour and does not contain any pause, neither
explicit nor implicit. Therefore, we believe that this was a full-immersion session
where Luwin did not get distracted during development and managed to complete
his tasks in a rush.

Figure 4.1. Cumulative activities for the Un-
interrupted Session

In Figure 4.1 we show the cumu-
lative chart for the activities done
during the session (the y-axis shows
the time in seconds). This chart re-
flects the metrics which show that
the time of understanding is about
31 minutes while the time of edit-
ing is circa half of it (16 min-
utes). Then, 7 minutes are ded-
icated to inspection and about 1
and half minute is spent in nav-
igation. This means that in this
session the developer actually spent
only around a third of his time in
writing code.

In Figure 4.2 we show the combined visualization of the window and activity
view (we show the figure horizontally oriented to improve readability). The session
presents two commits towards the end of the session (denoted by the blue vertical
lines) which indicate that the programmer considered the changes done during the
development session good enough to be versioned.
From the visualization we notice the existence of as single track behavior: That is
the presence of a predominant window which is active for most of the time and on
which most of the editing activities happen.
This session counts 85 windows in total, of which only a few last for a significant
amount of time, but only one that shows the presence of editing events. The latter
is the main window of the session.
Considering this information we can conclude that Luwin used a single window for
editing, while the other windows are mostly used to gather knowledge about the
system in order to perform the changes.

33 4.1 Analysis

Fi
gu

re
4.

2.
W

in
do

w
s

an
d

ac
tiv

ity
vi

su
al

iz
at

io
n

fo
r

th
e

U
ni

nt
er

ru
pt

ed
Se

ss
io

n

34 4.1 Analysis

Figure 4.3. Tree view with editings for the Uninterrupted Session

Figure 4.3, Figure 4.4, and Figure 4.5 show parts of the Tree View for the con-
sidered development session. The trees shown in the visualizations represent source
code artifacts that Luwin edited, inspected, or just browsed during this develop-
ment session.
The first tree (in Figure 4.3) confirms what we already saw with the window view.
Indeed this is the only tree that shows editing events. This means that the de-
veloper was focused on changing a single class of the system, namely the class
HESessionActivityWindow.
We see that some methods are edited multiple times over the session, and in the
case of the method openSelf, editing events are interleaved with inspections and
understanding events. This could be due to the fact that Luwin performed some
changes, then inspected the state of an object at runtime to see if the changes had

35 4.1 Analysis

Figure 4.4. Tree view with inspections for the Uninterrupted Session

the effects he wanted.
In Figure 4.4 we notice two trees on which the developer only inspected the code.
The first tree is particular since it has a large number of inspection events on the
method doesNotUnderstand of the class Object. These events corresponds to
errors appearing at runtime when an object does not have a method that is called
on it. This aspect enforces the idea of a developer that makes some changes, then
tests them by running the edited code. If he gets an exception, he then needs to
investigate on it.
In Figure 4.5 there are some small trees that mostly contain navigation and un-
derstanding events. These trees represent classes that could have some structural
relationships with the code the developer is editing. An important number of these
trees are relative to standard Pharo libraries to create GUIs. This could mean that
Luwin is seeking for information on the correct way to add certain objects to his

36 4.1 Analysis

Figure 4.5. Tree view with understandings for the Uninterrupted Session

program interface. Indeed the title of this session: ”Adding Toolbar” gives a clue
on the purpose of the session and on the purpose of understanding and inspecting
GUI creation methods.

(a) The workspace for the Uninter-
rupted Session at an early time

(b) The workspace for the Uninter-
rupted Session at a later time

Figure 4.6. Workspace of the developer at two different times.

Figure 4.6a and Figure 4.6b show Luwin workspace at two subsequent times in
the considered session. This visualization tells us the moves of the windows inside
the IDE. In this case we notice that the developer prefers to maintain windows in
the upper right corner of the screen, and only sometimes he moves them towards
other locations.

37 4.1 Analysis

4.1.2 An Interrupted Session
The second session we analyze is a session from a developer to which we will refer
as Robb. The session lasts for about 3 hours, of which 1 hour is a pause and the
remaining 2 hours is actual development. The pause comes after just 20 minutes
of work. This session is identified as a bug-fixing session, i.e., a session where the
goal of the developer is to fix some unwanted behavior of the software system.

Figure 4.7. Cumulative activities for the Frag-
mented Session

In Figure 4.7 we show the cu-
mulative chart for the devel-
opment activities done during
the session. This chart re-
flects the metrics which show
that the time of understand-
ing is around 1 hour and 20
minutes, the time of editing
is less than 25 minutes and
time of inspection and naviga-
tion are respectively 19 and 2
minutes.
We notice that the times of
editing and inspections are very close to each other, while the time of understanding
is approximately 4 times larger than them.
The large discrepancy between the time of editing and the time of understanding
could be determined by the nature of the session. Indeed a bug-fixing session can
require a deep understanding of the code and its behavior.

In Figure 4.8 we show the combined visualization of the windows and activity
view (we show the figure horizontally oriented to improve readability). We can see
that the number of windows is significant (226 opened windows during the session).
Interestingly Robb does not focus for long time on a single window, instead he
quickly jumps from a window to another to obtain information. Edit events are
also distributed among many different windows. The result of this behavior is a
very fragmented flow of actions.
Another particular aspect is that windows either have a short life, or they remains
idle for long time. Few windows are minimized, and then never considered again.
One window is minimized then used again by the developer.

38 4.1 Analysis

Fi
gu

re
4.

8.
W

in
do

w
s

an
d

ac
tiv

ity
vi

su
al

iz
at

io
n

fo
r

th
e

In
te

rr
up

te
d

Se
ss

io
n

39 4.1 Analysis

At regular intervals, Robb closes a significant amount of windows in a short
period of time. This could be seen as an attempt to clean the workspace, or prevent
it to become too much crowded with windows. Researches refer to this phenomenon
as the window plague [RND09]. In Figure 4.9 we highlight two occurrences of this
behavior.

Figure 4.9. Curing the window plague

Interestingly, this session does not present any commit event. This could mean
two different things: either the session was completely unproductive, and the user
decided not to commit any changes, or the changes where committed after the
DFLOW session was ended. It remains to be investigated which of the two hypothe-
ses is correct.

In Figure 4.10, Figure 4.11, and Figure 4.12 we show some parts of the tree
visualization for the considered session. Figure 4.10 and Figure 4.11 show two trees
where all of the editing events happens during the session. One difference of the two
trees is that the second contains a relative bigger amount of inspection respect to
the first tree. The first tree contains only one class, while the second tree contains
three different classes. It is interesting to notice that editing and inspection events
can be interleaved on the same artifact, which could mean that the developer edited
the code, then looked at the effects of the changes at runtime, then modified again
the code to obtain the desired behavior.

From this visualization we know that the developer modified about a dozen
of different methods. If we interrelate this information with the visualization in
Figure 4.8 we clearly see that the number of windows on which an edit event
happens is bigger than the number of code artifacts modified. This means that
Robb has a tendency to close the windows which contain the source code that needs
to be modified, forcing himself to spawn other windows focused on the same code
later on. Otherwise Robb does not easily found the window containing the code to
be modified, thus he opens a new one to make changes.

40 4.1 Analysis

Figure 4.10. Part of tree view for the Interrupted Session

Figure 4.12 shows a group of small trees with a predominance of inspection
events. Those trees mostly refer to standard libraries like Collection or TimeS-
tamp. These types of trees are very common when the developer tries to understand
the state of objects on which he is working on. A recurrent inspection event hap-
pens on the method haltIf, which is used to interrupt the runtime environment
at a particular point. These events indicates that the developer is performing a
debugging task.

41 4.1 Analysis

Figure 4.11. Part of tree view for the Interrupted Session

Figure 4.12. Part of tree view for the Interrupted Session

Figure 4.13 depicts the state of the workspace of the developer at two different
times. In this session, Robb tends to keep all the windows in the same area of the
workspace. This could constitute a problem if the number of windows grows too
large, because having many windows in the same area makes it difficult to find a
particular window that contains what the developer needs.
This could explain the need of closing windows across the session, and the editing
events on the same artifact distributed across many windows.

42 4.1 Analysis

(a) Workspace for the Interrupted
Session at an early time

(b) Workspace for the Interrupted
Session at a later time

Figure 4.13. Workspace of the developer at two different times.

4.1.3 Wrap-Up
In this section we presented two analyses of two different development sessions from
two different developers. We used all the visualizations provided by HACKNEYED
to analyze the interactions of the two developers with the IDE.
We saw two different developers’ behaviors: The first (subsection 4.1.1) where
the number of window is small and the edits are mostly performed on a primary
window, while the second (subsection 4.1.2) presents a large number of windows
with a fragmented activity on them.

43 4.2 Categorization

4.2 Categorization
In this chapter we describe a categorization of development sessions based on the
interaction of the developer with the user interface of the IDE, and we report
findings and statistics about the analyses we performed.
This work has been submitted to VISSOFT 2014 [MMLB14].

4.2.1 Principles of Characterization
We used the Window Activity View of HACKNEYED to classify sessions recorded
with DFLOW. We classified sessions based on similar characteristics, in particular,
we used the presence of dominant tracks of windows and the type of flow among
different tracks to define the types of session. A track o windows is a group of
windows dominated by a main window and where the other windows, which have
a shorter duration, act as a support of information for the main window.

Dominant Tracks: A dominant track is a window which presents a predominant
focus in the session and is often used by the developer to perform edits. In Figure 4.2
we show an example of a dominant track of windows.
We can devise three types of categories by analyzing the presence of dominant
tracks in the visualization:

1. Single-Track: there exists a single predominant track of windows. See Fig-
ure 4.14.

Figure 4.14. Example of single-track window

2. Multi-Track: there exists two or more predominant tracks of windows. See
Figure 4.15.

Figure 4.15. Example of multi-track window

44 4.2 Categorization

3. Fragmented: there are no predominant tracks of windows, and the developer
often changes focus from one window to another. See Figure 4.16.

Figure 4.16. Example of fragmented track window

Track Flow: we define the track flow as how the developer alternates his focus
among different windows. We can devise two behaviors based on the track flow:

1. Sequential Flow: this type of flow is characterized by the developer moving
from one track to the next in a sequential way, and rarely come back to the
previous tracks. See Figure 4.17

Figure 4.17. Example of sequential flow

2. Ping-Pong Flow: the development flow continuously goes from one track to
another and back. This behavior could create a fragmented view, especially
if no dominant track is present. See Figure 4.18

45 4.2 Categorization

Figure 4.18. Example of ping-pong flow

4.2.2 Characterization of Development Sessions
In this section we present some statistics on the collection of development sessions
we have. We analyzed development sessions from 7 different developers.

Sessions Categories

Table 4.1 groups the session using the categorization presented in subsection 4.2.1,
we categorized a sample of 164 session, discarding 13 session that were too short or
with few events.
Single and Fragmented tracks sessions are more frequent than multi-track session.
Sequential flow sessions are more frequent than ping-pong flow sessions, but ping-
pong flow is relatively more frequent in single and multi-track session, than in
fragmented sessions.

Sequential Flow Ping-Pong Flow Total
Single-Track 50 19 69
Multi-Track 18 7 25
Fragmented 67 3 70
Total 135 29 164

Table 4.1. Categorized sessions

In Table 4.2 we show the categorized development sessions for each developer.
The column # reports the number of sessions for developer. The columns Single,
Multi, and Frag refer respectively to single-track, multi-track, and fragmented ses-
sions. The columns Seq and PP refer to sequential-flow session and ping-pong flow
session.

46 4.2 Categorization

Devel- # Track Flow Not
oper Single Multi Frag Seq PP classified
Aerys 12 1 8 % 1 8% 8 67% 9 75% 1 8% 2 17%
Davos 3 2 67% 0 0% 1 33% 3 100% 0 0% 0 0%
Luwin 65 45 69% 10 15% 8 12% 45 69% 18 28% 2 3%
Mace 6 0 0 % 0 0% 6 100% 5 83% 1 17% 0 0%
Robb 73 13 18% 10 14% 41 56% 60 82% 4 5% 9 12%
Tommen 7 2 29% 2 29% 3 43% 4 57% 3 43% 0 0%
Yoren 11 6 55% 2 18% 3 27% 9 82% 2 18% 0 0%

Table 4.2. Categorized development sessions for developers

Luwin and Robb are the developers that contributed the highest number of
sessions, while for Davos we have little data to characterize his behavior. Single-
track sessions are common for Davos, Luwin, and Yoren. Luwin is the developer
having most of them for both quantity and average. Fragmented track sessions are
common for Aerys, Mace, Robb and Tommen, with Mace having all his 6 sessions
categorized as fragmented, and Robb having the highest number of them: 41. With
the exception of Tommen, most sessions of all the developers can be categorized as
having a sequential flow rather than ping-pong flow. This is particularly interesting
since these type of sessions can possibly suffer from the so called Window Plague
[RND09]. The Window Plague is when a developer opens an high number of win-
dows on different artifacts in order to reveal relationship among code entities. This
window plague can lead to a crowded workspace for long development sessions. The
Window Plague can occur both on window based IDEs, like Pharo, and tab based
IDEs, like Eclipse.

Average times of activities for developers

Developer Dur E. Dur E. Pause I. Pause % Edit % Insp % Nav % Und.
Aerys 1,906 181 1 1,723 24.71% 3.78% 3.68% 67.80%
Davos 16 16 0 0 16.37% 12.00% 4.51% 66.63%
Luwin 102 52 19 31 25.22% 8.09% 3.03% 63.54%
Mace 1,010 48 6 957 15.42% 7.94% 2.88% 73.50%
Robb 272 52 204 15 21.42% 7.65% 4.02% 66.82%
Tommen 283 85 132 66 8.30% 6.46% 4.69% 80.49%
Yoren 1,888 141 0 1,747 11.77% 5.34% 1.99% 80.78%
All 782 82 52 648 17.60% 7.32% 3.54% 71.37%

Table 4.3. Average times for developers

In Table 4.3 we report some statistics about the average time each developer
spends for the session, or different activities. In the table there are:

47 4.2 Categorization

• Dur: the overall duration in minutes of the session, pauses included.

• E. Dur: the effective duration in minutes of the session excluding the pauses.

• E. Pause: the explicit pauses duration in minutes. These are the pauses
actively triggered by the developer by using the DFLOW interface.

• I. Pause: the implicit pauses duration in minutes. These are the pauses we
computed after observing a long period of inactivity by the developer (the
default is 10 minutes).

• % Edit the percentage of time a developer spend on editing respect to the
effective duration of the session.

• % Insp the percentage of time a developer spend on inspecting respect to the
effective duration of the session.

• % Nav, the percentage of time a developer spend on navigating respect to the
effective duration of the session.

• % Und are the percentage of time a developer spend on understanding the
code respect to the effective duration of the session.

The table reports the average values across all the session collected for each
developer. In the last row, there are the average values from all the sessions.

In average the effective duration for a session is about 1 hour and 20 minutes, but
the average duration of sessions varies for each developer. Pause times are different
for each developer, especially for the implicit pauses which range from zero or few
minutes to more than a day (Aerys and Yoren). We can explain these differences by
the interpretation of what a session is. A development session recorded by DFLOW
can be identified by a title that represent the purpose of the work that will be
performed. This induces the developer to create a relation between session with a
specific task, which ultimately depends on how a developer defines a task. There
could exists micro tasks, like ”adding a button to an interface”, or macro tasks, like
”create a new visualization”, or even no specific tasks like ”working on the system”.

It is important to analyze the average percentage of editing and understanding
time. We clearly see that overall the editing time counts for less than 20%, while the
understanding time is more than 70%. Past researches ([ZSG79], [FH83], [Cor89])
stated that programmers spend half of their time editing source code, while the
other half in understanding it. The data reported show that actually the editing
time can be much lower than 50% of the duration of a development session. It
follows that understanding time is much larger: in average more than 70%.

48 4.2 Categorization

Category Dur E. Dur E. Pause I. Pause % Edit % Insp % Nav % Und.
single 191 53 12 125 26.05% 6.39% 3.47% 63.99%
multi 343 69 46 227 21.92% 6.28% 3.34% 68.40%
fragmented 33 18 6 9 14.57% 4.06% 4.01% 77.24%
sequential 619 72 184 363 20.24% 9.89% 3.40% 66.38%
ping-pong 168 71 62 35 24.77% 7.57% 3.45% 64.16%

Table 4.4. Activity times for the categorized sessions

Average times of activities for categorized sessions

In Table 4.4 we report the average time spent by developer in the development
session categorized using the categories definitions described in subsection 4.2.1.
We notice that for the track flow categorization the average time spent in various
development activities, like editing and understanding, varies for few points in
percentage. Nevertheless, we have an higher editing time for ping-pong session
than for sequential sessions.
For the categorization based on the dominance track of windows we notice that
there is an important difference in the editing time. Indeed the fragmented sessions
have less than 15% of editing time, which compared with the 26% of editing time
of single-track sessions it makes a big difference. Also the understanding time for
fragmented sessions is around 77%, while single track sessions and ping-pong flow
sessions have an average time of understanding of about 64%. We can deduce that
software developers are more productive if they can focus their attention on few
main sources of information (windows) rather than having to gather information
from various multiple sources.

Sessions by type

In Table 4.5 we report statistics about the sessions divided by the type of the session
that the developer assigns to it when the recording starts.

Type # Dur E. Dur E. Pause I. Pause % Edit % Insp % Nav % Und
Enhancement 91 349 55 83 212 24.23% 7.84% 3.82% 64.02%
Bug-Fixing 25 213 43 39 131 21.07% 11.71% 2.49% 64.57%
Refactoring 7 56 43 12 0 25.41% 0.80% 5.75% 67.89%
General 61 954 103 120 731 17.12% 6.47% 2.93% 73.38%

Table 4.5. Sessions divided by session type

We notice that the percentage of inspecting time is higher in the bug-fixing
sessions, while it is lower in the refactoring sessions. We can explain this by the fact
that inspecting the state of an object is a fundamental action when the developer is
fixing unexpected behaviors (bugs). In a refactoring session the developer is more

49 4.3 Discussion

focused on improving the quality of the source code, and should not modify the
behavior of objects.

General sessions are the session where the developer did not know how to classify
them, hence he assigned a general purpose type. These sessions, respect to the other
three types, have an average higher duration and pause times, but they also have
a lower percentage of editing time. This is a clue that if a developer has a clearly
defined task he can be more proficient than when he has not a clear goal.

4.3 Discussion
In this chapter we described how HACKNEYED can be used to analyze the behavior
of developers when interacting with the IDE. We presented a categorization of
development session based on the interactions of the developer and discussed some
statistics. Our data shows that the editing time can be much lower than 50% of
the duration of a development session, that was the hypothesis of past researches
([ZSG79], [FH83], [Cor89]). Our approach gave evidence that the average editing
time for a development session is less than 20% of the overall time. It follows that
the time used by developers to understand the software system is around 70%. This
means that on average a developer spend much more time in understanding source
code than editing it.

50 4.3 Discussion

Chapter 5

Related Work

In this chapter we discuss related work divided in categories: Section 5.1 presents
studies about the behavior of developers, Section 5.2 presents studies about how
developers interact with the IDE.
Our approach can be categorized under two areas of software engineering: Reverse
Engineering (Section 5.3) and Software Visualization (Section 5.4).

5.1 Behavior of Developers

There are two main methods used to analyze the behavior of developers: Analyze
data gathered from versioning system, and collect data using laboratory studies,
observations, and questionnaires.

Versioning systems Greevy et al. and Girba et al., performed studies of how de-
velopers collaborate to build a software system [GGD07] [GKSD05]. They focused
their studies on defining the division of responsibilities of developers and on estab-
lishing the relation between features and developers.
They found that the evolution of a software system presents behavioral patterns
regarding the contribution of various developers. For example they defined a mono-
logue period, in which a developer makes most of the changes, or a teamwork period,
where many developers frequently commit changes, or a silence period.

In our work we also analyze the behavior of developers while building software
systems. We try to establish behavioral patterns that one or more developers
present during their work.
Differently to related work, we do not perform an analysis on the data collected
from a versioning system, but we use more fine grained data about development
sessions. With this approach we know which part of the system a developer has
modified, which part of the system was only accessed but not modified, and the

51

52 5.2 Interaction with IDEs

interaction with the development environment (e.g interaction with windows). This
information is not available on the data collected from a standard versioning system,
which only records the changes that a developer decides to commit.

Laboratory study, observation and questionnaires LaToza and Myers analyzed
how developers spend their time by using observations and surveys [LM10]. They
found that developers spend a significant time in understanding code, rather than
editing it.

LaToza, et al. used surveys to classify the major problems developers have when
they comprehend source code [LVD06]. For example, two of the main problems
reported are understand the rationale behind a piece of source code and understand
code that someone else wrote.

Ko et al. conducted a laboratory experiment to better understand how devel-
opers gather information that are necessary to make changes to a software system
[KMCA06]. They found, that on average developers edited an unfamiliar source
code for a fifth of the time. Also, they found that developers spend about 35% of
their time navigating between relevant code fragments.

Singer et al. conducted a study on the time software developers use for various
practices [SLVA97]. They used questionnaires, and various observations to fulfill
this purpose. Although they did not use a precise measure for the time taken by
various developer activities, they noticed that the time spent on writing source code
is less than the time spend on other activities, like debugging or searching.

One of the purposes of this work is to establish similar metrics on the work of
software developers. Rather than focusing our analysis on the data collected by
questionnaires or observations, we use data from recordings of developers interac-
tions with the IDE. Using this data, we are able to estimate the time a developer
spends for a particular activity.

5.2 Interaction with IDEs
To understand how developers interact with IDEs, researches recorded and collected
data about interactions, like invoked commands or keystrokes. Then, they analyzed
this data to better understand the behavior of developers.

Yoon and Myers developed FLUORITE, a tool that can record low-level source
code events in the Eclipse IDE [YM11]. By analyzing the recorded data, they found
that editing source code is different than editing documents. For example some of
the most used keystrokes by programmers are the backspace and arrow keys. Which
are used to delete text and move inside the editor. These are evidences that editing
code is different than editing text document, where for example the backspace
keystroke is less used.

53 5.3 Reverse Engineering

Murphy et al. tried to establish how much relevant is the usage of plugins in
the Eclipse IDE [MKF06]. They collected data using the Mylar framework. They
found that a large percentage of commands is invoked using key bindings by the
developers. This is especially true for the most frequent commands, while the least
frequent commands are mostly invoked from the menus.

Robbes and Lanza presented SPYWARE, a tool that records the changes per-
formed by a developer in the editor[RL08].

Minelli and Lanza devised DFLOW, a tool that observes the workflow of develop-
ers inside the PHARO IDE while performing software engineering tasks, and records
all the actions performed [ML13a]. In this work we rely on the data collected by
DFLOW to perform our analysis.

In contrast with the first two works presented, we analyze the data at a higher
conceptual level. This means that we estimate what are the actions of a developer
from the data collected, rather than analyzing the keystrokes or how a particular
command is invoked.

5.3 Reverse Engineering

Reverse Engineering is the process of analyzing a subject system to: Identify the
system’s components and their interrelationship, and create representation of the
system in another form or at higher level of abstraction [CC90].
With this work we can reproduce information about which components of a soft-
ware system a developer edited or inspected during a development session. We can
analyze how a component is modified during development.

Robbes and Lanza introduced the concept of development session, as the time
in which a developer actively modifies a software system [RL07]. They state that
a development session contains valuable information for program comprehension,
which are then lost on the versioning system. Using this information about devel-
opment sessions, it is possible to depict a software system as the results of multiple
changes operation rather than a sequence of versions. They assert that a session
follows an incremental logic of changes, i.e., a developer starts by introducing basic
concepts that are then progressively extended during the session.

In this thesis, we focus on understanding development sessions. In particular
we try to assess which actions developers take to modify and understand a software
system.

54 5.4 Software Visualization

5.4 Software Visualization
”Exploring information collections becomes increasingly difficult as the volume
grows”([Shn96]); the goal of visualization is to ease the understanding of large
amount of information. Software visualization is a specialization of information
visualization focusing on software [Lan03].

Lanza and Ducasse introduced the concept of polymetric view [LD03]. This is
a lightweight software visualization technique enriched with software metrics infor-
mation. Polymetric views help to understand the structure and detect problems
of a software system. Girba et al. use visualizations to build ”Ownership Maps”
for software systems developed by multiple developers [GKSD05]. Ogawa and Ma
propose a visualization to show interactions between developers of a project during
the development [OM10].

In this work we use visualizations to analyze and understand the behavior of
developers when they interact with the IDE. Contrarily to Girba and Ogawa we
do not depict interactions among different developers, but we focus on the analysis
of a single development session and the interaction between the developer and the
IDE.

5.5 Summing up
In this chapter we have presented some approaches related to our work, describing
similarities and differences between our work and previous studies. To contextu-
alize our work, we briefly introduced two areas of software engineering: Reverse
Engineering and Software Visualization.

Understanding the interactions between developers and their development en-
vironment is a fundamental step towards building better tools for developers.
In this work we use software visualization to analyze the behavior and interactions
of software developers, by using visualizations.

Chapter 6

Conclusions

In this chapter we summarize our work and we discuss future work.

6.1 Summary

Software development is a time consuming activity. To write source code, a software
developer needs to find, read, and understand the relevant parts of the code base
of the system. Past researches ([ZSG79], [FH83], [Cor89]) indicated that software
developers spend half of their time editing source code, and half understanding it.

Integrated Development Environments (IDEs) are the most common tools used
by software developers when working on software systems. The purpose of IDEs
is to help developers to handle the complexity of software systems, but it is not
clear how much they can ease development, or in which ways software developers
use them. There exist various researches that try to understand the interactions
between developers and IDEs ([SLVA97], [KMCA06], [LVD06], [MKF06], [LM10],
[YM11], [ML13a]).

With this work we want to visually analyze how software developers use the
IDE to comprehend and build complex software artifacts. Analyzing the interac-
tions developers have with IDEs is a first step towards building better IDEs that
enhance software development processes providing the software developer with sup-
ports in understanding software systems. To build better IDEs we should consider
the analysis of interactions as an insight about problems developers face with the
current tools.
We used data about development sessions from different developers collected with
the tool DFLOW. We built the tool HACKNEYED, that provides various visualization
abut development sessions (chapter 3).
We use visualizations of HACKNEYED to analyze the collected data about develop-
ment session. We categorized them by analyzing patterns that they present, like

55

56 6.2 Future Works

dominant tracks and track flows (subsection 4.2.1).
We extracted metrics from the collected data to improve the estimation on the time
spent by developers in editing and understanding source code (subsection 4.2.2).

6.2 Future Works

Growing Sample: We currently have around 200 development sessions from 7
different developers. Having more data would allow to refine our analysis, and
possibly find other behaviors that were not covered by the considered sample.

Improve estimation: Future versions of DFLOW will include data about keystrokes
and mouse movements performed by the user. These data can be use to ameliorate
our visualizations or derive new ones.

Improve analysis: We concentrated our analysis more on the combined visualiza-
tion of windows and activities (subsection 3.2.5). It would be possible to extend
the other visualization and have a more complete analysis.

Support for Versioning System: Adding data collected by versioning systems can
improve the analysis. For example it can improve the data about commits, or can
add the notion of code ownership to the analysis.

Evaluate Tools: Some tools like Autumn Leaves try to reduce the window plague
[RND09]. We could use visualizations from HACKNEYED to evaluate if these types
of tools are really useful for the developer.

Ameliorate Window Management: PHARO does not perform any management
of windows by default. From the analysis of the workspace visualizations the effect
of the window plague is visible. It is possible to ameliorate existing windows man-
agement systems by exploiting the availability of run-time information about the
interaction of developers with windows.

Development sessions and Evolution of the System: It wold be possible to use
the information about development sessions combined to the study of the evolution
of a software system. In this way we could understand how each development
session affects the evolution. For example we could identify which of the changes
performed in a session are actually committed and those who were not.

57 6.3 Epilogue

Understanding the understanding: With this work we have evidence that the
time needed for a developer to understand the code has been underestimated. It
remains to asses which are the causes of this large times. It is possible to study which
source code artifacts require larger understanding time for a developer session, and
maybe establish a relation with some common software practice like: absence of
comments, missing design patterns, relation with other artifacts, etc.

6.3 Epilogue
We used these visualizations to better understand the behavior of software devel-
opers when programming.
We have evidence that the common knowledge of a developer editing source code
for half of his time and understanding the source code for the other half of its time,
was largely underestimating the problem of understanding the source code. Indeed
we found that on average a developer spends less than 20% of the time editing
code. As a consequence developers spend around around 70% of their working time
in understanding the source code.
We hope that this evidence will motivate new researches on the problems software
developers face each day while working on software systems. By analyzing the
causes of the large understanding times we could build better software environ-
ments that effectively help developers in the task of gathering knowledge about the
software system, hence help developers in their work.

58 6.3 Epilogue

Appendix A

The architecture of HacknEyed

HACKNEYED is a plugin in the PHARO IDE. PHARO1 is a pure object-oriented
programming language and environment based on the Smalltalk programming lan-
guage. Differently from most modern IDEs its environment is based on windows
instead of tabs. Moreover the language is not file based, but image based. It follows
that a developer can browse a single method in a window rather than the entire
code of a class.
HACKNEYED depends on the tool DFLOW, for gathering the data about developer
interaction, and it uses ROASSAL which is a visualization engine for PHARO.
DFLOW is a tool that silently observes and records the workflow of developers in-
side the IDE while performing software engineering tasks [ML13a]. We use the
recorded data form DFLOW to create the visualizations and perform analysis on it.
ROASSAL2 is a visualization engine for Pharo. With Roassal is possible to produce
interactive visualizations for arbitrary data.

The conceptual architecture of HACKNEYED is rather simple. It is composed
of:

• Pre-Processor, a component responsible to gather the raw data from DFLOW
and transform them in something that is easier to visualize.

• View Generator which is the component responsible for building the various
visualizations.

1See http://www.pharo.org/
2See http://objectprofile.com/Roassal.html

59

http://www.pharo.org/
http://objectprofile.com/Roassal.html

60

Pharo

DFlowRoassal

HacknEyed

Pre-

Processor

View

Generator

Figure A.1. Architecture of HACKNEYED

Bibliography

[Bro95] F.P. Brooks. The Mythical Man-month: Essays on Software Engineer-
ing. Essays on software engineering. Addison-Wesley, 1995.

[CC90] E.J. Chikofsky and II Cross, J.H. Reverse engineering and design re-
covery: a taxonomy. Software, IEEE, 7(1):13–17, Jan 1990.

[Cor89] T. A. Corbi. Program understanding: Challenge for the 1990’s. IBM
Syst. J., 28(2):294–306, June 1989.

[FH83] R. K. Fjeldstad and W. T. Hamlen. Application Program Maintenance
Study: Report to Our Respondents. In Proceedings GUIDE 48, April
1983.

[GGD07] Orla Greevy, Tudor Gîrba, and Stéphane Ducasse. How developers
develop features. In René L. Krikhaar, Chris Verhoef, and Giuseppe
A. Di Lucca, editors, CSMR, pages 265–274. IEEE Computer Society,
2007.

[GKSD05] Tudor Girba, Adrian Kuhn, Mauricio Seeberger, and Stephane Ducasse.
How developers drive software evolution. Principles of Software Evolu-
tion, International Workshop on, 0:113–122, 2005.

[KMCA06] Andrew J. Ko, Brad A. Myers, Michael J. Coblenz, and Htet Htet
Aung. An exploratory study of how developers seek, relate, and collect
relevant information during software maintenance tasks. IEEE Trans.
Softw. Eng., 32(12):971–987, December 2006.

[Lan03] Michele Lanza. Object-oriented reverse engineering coarse-grained,
fine-grained, and evolutionary software visualization, 2003.

[LD03] Michele Lanza and Stéphane Ducasse. Polymetric views – a lightweight
visual approach to reverse engineering. 29(9):782–795, September 2003.

[LM10] Thomas D. LaToza and Brad A. Myers. Developers ask reachability
questions. In Jeff Kramer, Judith Bishop, Premkumar T. Devanbu,
and Sebastián Uchitel, editors, ICSE (1), pages 185–194. ACM, 2010.

61

62 Bibliography

[LVD06] Thomas D. LaToza, Gina Venolia, and Robert DeLine. Maintaining
mental models: A study of developer work habits. In Proceedings of
the 28th International Conference on Software Engineering, ICSE ’06,
pages 492–501, New York, NY, USA, 2006. ACM.

[MKF06] Gail C. Murphy, Mik Kersten, and Leah Findlater. How are java soft-
ware developers using the eclipse ide? IEEE Softw., 23(4):76–83, July
2006.

[ML13a] Roberto Minelli and Michele Lanza. Dflow – towards the understanding
of the workflow of developers. In SATToSE 2013 (6th Seminar Series
on Advanced Techniques & Tools for Software Evolution), 2013.

[ML13b] Roberto Minelli and Michele Lanza. Visualizing the workflow of devel-
opers. In Proceedings of VISSOFT 2013 (1st IEEE Working Conference
on Software Visualization). IEEE CS Press, 2013.

[MMLB14] Roberto Minelli, Andrea Mocci, Michele Lanza, and Lorenzo Baracchi.
Visualizing developer interactions (under revision). In Proceedings of
VISSOFT 2014 (2nd IEEE Working Conference on Software Visual-
ization). IEEE CS Press, 2014.

[OM10] Michael Ogawa and Kwan-Liu Ma. Software evolution storylines. In
Proceedings of the 5th International Symposium on Software Visualiza-
tion, SOFTVIS ’10, pages 35–42, New York, NY, USA, 2010. ACM.

[RL07] Romain Robbes and Michele Lanza. Characterizing and understand-
ing development sessions. In ICPC, pages 155–166. IEEE Computer
Society, 2007.

[RL08] Romain Robbes and Michele Lanza. Spyware: A change-aware devel-
opment toolset. In Proceedings of the 30th International Conference on
Software Engineering, ICSE ’08, pages 847–850, New York, NY, USA,
2008. ACM.

[RND09] David Röthlisberger, Oscar Nierstrasz, and Stéphane Ducasse. Autumn
leaves: Curing the window plague in ides. In Giuliano Antoniol, Martin
Pinzger, and Elliot J. Chikofsky, editors, WCRE, pages 237–246. IEEE
Computer Society, 2009.

[Shn96] Ben Shneiderman. The eyes have it: A task by data type taxonomy for
information visualizations. In Proceedings of the 1996 IEEE Symposium
on Visual Languages, VL ’96, pages 336–, Washington, DC, USA, 1996.
IEEE Computer Society.

63 Bibliography

[SLVA97] Janice Singer, Timothy Lethbridge, Norman Vinson, and Nicolas An-
quetil. An examination of software engineering work practices. In
Proceedings of the 1997 Conference of the Centre for Advanced Studies
on Collaborative Research, CASCON ’97, pages 21–. IBM Press, 1997.

[Wei85] Gerald M. Weinberg. The Psychology of Computer Programming. John
Wiley & Sons, Inc., New York, NY, USA, 1985.

[YM11] YoungSeok Yoon and Brad A. Myers. Capturing and analyzing low-
level events from the code editor. In Craig Anslow, Shane Markstrum,
and Emerson R. Murphy-Hill, editors, PLATEAU, pages 25–30. ACM,
2011.

[ZSG79] Marvin V. Zelkowitz, Alan C. Shaw, and John D. Gannon. Principles of
Software Engineering and Design. Prentice Hall Professional Technical
Reference, 1979.

	Contents
	List of Figures
	List of Tables
	Introduction
	Contributions
	Structure of the Document

	Interaction Data
	DFlow and interaction data
	Data interpretation
	Window Events
	Development Events

	Development activities
	Dataset
	Discussion

	HacknEyed
	The Problem
	Visualizations
	Tree View
	Window Activity View
	Activity Views
	Workspace View
	Combined Views

	Interaction with the visualizations
	Metrics
	Wrap-Up

	Telling development stories with HacknEyed
	Analysis
	An Uninterrupted Session
	An Interrupted Session
	Wrap-Up

	Categorization
	Principles of Characterization
	Characterization of Development Sessions

	Discussion

	Related Work
	Behavior of Developers
	Interaction with IDEs
	Reverse Engineering
	Software Visualization
	Summing up

	Conclusions
	Summary
	Future Works
	Epilogue

	The architecture of HacknEyed
	Bibliography

