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Abstract

While digital visualizations are extremely useful and often a lot convenient, sometimes the necessity of having a
tangible model arises. Designers, engineers or researchers in general, may need to construct artifacts of their work.
Architects, more specifically, often manufacture a scaled version of their project to present it, usually including the
context where these projects are located. These kinds of models, which are incredibly expensive in terms of money
and time, are called urban area models. 3D printers may help during this process, however, they not only need a
precise 3D model of the whole area to print, which may be difficult to design, but they also impose limits on the
maximum printable volume, e.g., a standard 3D printer has a maximum printable volume of nearly 15cm3 The goal
of this project is to develop an approach to automatically create 3D physical representations of urban areas such as
cities and districts using the Swiss Federal Office of Topography geospatial data, which includes detailed 3D models
of buildings and their locations, adjust this model in order to make it printable, subdivide it into interlocking sections
which can be printed separately and merged to form a 3D model of arbitrary size.
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1 Introduction

By the early 1990s, the field of 3D modeling and printing started a revolution, not only from an engineering point of
view but also in every area linked with model design, construction, and visualization. Generally, 3D printed models
are extremely practical aid to help people grasp difficult concepts more easily. Actually being able to hold and play
with an object gives them a far richer and deeper understanding of a subject. Moreover, with 3D modeling having
become a core of architectural design, land registers can now offer data for new opportunities and challenges in
the field of spatial visualizations. In particular, Switzerland possesses an impressive geographic information system
(GIS 1), a system designed to capture, store, and present spatial or geographic data covering the whole country.
Among this data, approximately 70 million of 3D objects are available. Entities like the Swiss Federal Office of
Topography 2 offers these digital resources. Using this considerable amount of data, one can design a faithful 3D
map reconstruction of districts, cities or even entire Swiss cantons. 3D digital models are, however, constrained in
the unnatural 2D world of computer monitors and it is often useful to print them, Studies[4] shows that constructing
a recognizable 3D visualization comes with a lot of perspective problems that we do not have to face if we build a
physical representation. An architect, for example, usually produces a scaled replica of his project, maybe immerse in
the context where it is located, to let people understand his project, but this process involves a lot of money and time.
And here is exactly where 3D printers, and additive manufacturing3 (AM) process in general, comes in. However,
even if these machines are becoming more and more precise and sophisticated, they tend to preserve one major
constraint: a limited 3D printing volume i.e., the maximum size that one object can have in order to be printed. It is
really hard to print something as big and with plenty of details as a city in the maximum printing volume 3D printers
can offers. This raises the need for a software which automatically subdivides a model into printable sections that
can be later assembled in a wider model of arbitrary scale.

2 Background

None of the popular 3D computer graphics software toolsets has a function like this available. Despite you can
reproduce this result in programs like Blender 4 or 3DS Max 5, the work should be done ad hoc for one specific model
and it will anyway be difficult to achieve the same level of precision.
Moreover, 3D models may comes with plenty of errors which are irrelevant from a visualization point of view but
critical if we want to work on them. In the case study we will present in Section 4, the model we decided use
is automatically generated from data and has up to one million of vertex which are not perfectly aligned, a lot of
objects are disconnected, and some faces are missing. These are major complications for printing it and makes the
task of manually model the geometry fairly impossible.

2.1 Goal of the Work

In this thesis we propose a novel 3D processing tool, written in Python using the Blender API 6, our approach helps
3D model designers to print geometries of any arbitrary scale, regardless of the maximum printable volume of their
3D printer, by automatically repair and subdivide 3D objects into printable and assemblable sections. More in details,
the contribution of this thesis are:

• A Repairer tool to adjust mesh object;

• A Sub-divider tool which allows decomposing mesh object in an arbitrary number of pieces;

• A connecting tool to form interlocking components in order to assemble them once printed.

We wrapped all of them in one single Blender add-on component that we will soon release and which can be directly
installed into Blender.
Before proceeding with the tool architecture, we must clarify which functional requirements we want to satisfy,
namely:

1. The tool must verify that the loaded model is printable, otherwise, must try to repair it (see section 3.1).

1https://en.wikipedia.org/wiki/Geographic_information_system
2https://www.swisstopo.admin.ch/en/home.html
3https://www.3dhubs.com/knowledge-base/additive-manufacturing-technologies-overview
4https://www.blender.org/
5https://www.autodesk.it/products/3ds-max/overview
6https://docs.blender.org/api/blender_python_api_current/bmesh.html
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2. If the model is printable (or made printable after the repair phase) it has to be divided into printable section
according to the specifics of the 3D printer and the final size the user wants to obtain.

3. The dimensions of the final model, once assembled, must be the ones specified by the user.

4. All sections must be joinable (i.e., two near sections can be interlocked together).

We also aim to satisfy the following non-functional requirements:

1. The repair phase, if executed, should not compromise the original object.

2. All section should be uniquely identified through a label to facilitate the reconstruction of the final model.

We will now go though the process steps and present then a case study applied to the ongoing postdoctoral work of
Minelli, where we deal with an automatically generated urban model of the city of Lugano.

3 Approach

In this section we will describe in detail our approach to repair the model, subdivide it into sections and made these
section interlocking.

The tool will receive an ‘stl‘ 7 (stereo-lithography) object, along with the specifics of the users 3D printer and the
final size which the user needs to achieve and will output n printable partitions of that object plus a list of components
needed to assemble these partitions in a Lego brick fashion. A complete workflow can be found in Figure 1.

Figure 1. Workflow of the process

The workflow to generate the printable partitions consists of three phases: repair (Section 3.1), sub-division
(Section 3.2), and connection (Section 3.3).

7https://en.wikipedia.org/wiki/STL_(file_format)
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3.1 Repair Phase

In order to 3D-print any object, one requirement for that particular object is to be manifold 8. A manifold is a
topological space that is locally Euclidean (i.e., around every point, there is a neighborhood that is topologically the
same as the open unit ball inRn). A non-manifold geometry, on the other hand, is a 3D shape that cannot be unfolded
into a 2D surface with all its normals pointing the same direction. Basically a non-manifold geometry cannot exist in
the real world, hence, it cannot be printed. The repair phase aim to fulfill the following requirements:

• Create a closed 3D model with voluminious surfaces: To ensure that the geometry is closed (or "watertight")
we must verify that the 3D-model does not contain surfaces which do not bound a volume: a surface without
a thickness or which does not contribute to a volume cannot be 3D printed. This problem can be corrected by
giving the surface(s) volume [2]. In other cases, there may be small holes which prevent volume from being
"watertight," in this case they must be filled by adding a new face. Figure 2 shows the difference between
closed printable meshes (in green) and a mesh without volume (in red)

Figure 2. Watertight requirement

• Correct non-manifold edges and singular points: To define a clear volume, each edge must be connecting
two and only two adjacent faces. Similarly, singular points must arrive at the collection of multiple faces.
These singularities can be eliminated by either disconnecting the non-manifold surface and giving it volume,
or by deleting it completely. Figure 3 shows two examples where edges connects more than two faces (in red)
leading to an undefined volume.

Figure 3. Manifold edges and singular points handling requirement

• Delete auto-intersections: Some geometries may have problems such as two or more volumes cut into each
others. These intersections create an ambiguous model with uninterpretable volumes. We can address this
problem by performing a union of the meshes which are intersecting. Figure 4 shows how a 3D mesh unfolded
in a 2D space would appear with or without auto-intersections.

8https://en.wikipedia.org/wiki/Manifold
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Figure 4. Absence of auto-intersection requirement

• Correctly orient model’s surfaces: If one of the faces of an object is oriented in the wrong direction, it’s
volume may be indeterminable. It is important to ensure that each face is oriented in the correct direction
in order to avoid that type of problem. Figure 5 shows an example of correct and one of incorrect normal
directions, in the latter case, the object cannot be unfolded in a 2D space with all its normal pointing in the
same direction, this breaks the manifold condition.

Figure 5. Correct normals requirement

• Separate Objects: Even if this is not a proper manifold problem, a floating piece or separate object may ruin
our final result, it happens when the geometry consists of more connected components. This particular problem
may be addressed in a different way based on the result we are seeking for: In the case study we will present
in Section 4, for example, we will see that separate objects are buildings floating over the ground, so to solve
this problem, separated components are just translated towards the ground until they intersect it.

These problems may or may not arise depending on how the original mesh is constructed, in the case study of section
4, for example, the mesh is automatically generated from raw data, and all these problems were encountered, we
will see how this phase is crucial for the final result.

Furthermore, different kind of contexts comes with different kinds of problems: Consider for example the last
problem presented: separate objects. This is a general problem which any geometry can present, however, it is par-
ticularly recurrent in urban area models. The process we applied to solve it does not work for any arbitrary mesh: In
this particular case, we can exploit the fact that a ground plane exists and translating building against it will produce
an intersection. One possibility, for any arbitrary geometry, may just be removing the whole disconnected compo-
nent, nevertheless, this violates one of our non-functional requirements since we are altering the original mesh. This
repair phase is precisely tweaked in order to work with a specific kind of models, namely, urban models.

Mesh repairing, anyway, is a well-known problem in 3D modeling, and a lot of services and functions are available
to solve it [1] [3]. The Blender API offers many procedures for repairing each type of non-manifold and these are
embedded in our tool.

Moreover, since the computational cost of the whole procedure depends on the number of vertex, edges, and faces,
in this phase we will also try, where possible, to simplify the mesh while keeping the same level of details. More in
detail:

• Faces are flattens until a fixed angle (i.e., if two faces share and an edge and they are within an arbitrary angle
these faces are merged);

• Disconnected vertices and edges (optionally faces) are removed;

• Degenerate components are removed (i.e., collapses or removes geometries like edges with no length,Faces
with no areas, etc.).
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At the end of this phase, in order to certify that our mesh is actually printable, one optional procedure uses Trinckle9,
a web service which act as verifier and, if needed, as an in-depth repairer for 3D objects (Note that we cannot use
this, or any, repairer from the beginning, since they are general purpose repairer and they would not consider some
specific problems of urban meshes). The result, after this phase, is a manifold geometry which can now be processed
for sub-division.

3.2 Sub-Division Phase

Once the model is repaired and ready to print, we have to tackle the biggest challenge of our approach: Splitting it
into sections. the goal here, in fact, is to produce manifold sections of arbitrary sizes subdividing the original mesh.

A geometry can be divided into separate meshes in different ways, we chose to adopt the division by planar cuts:
A 3D grid is constructed around the object and content of each cell in this grid will then represent one of the final
section in which the original geometry will be divided.

What we are actually constructing is a rectilinear grid 10, a tessellation by rectangular cuboids that are, in our
case, all congruent to each other, this structure can be constructed arranging parallel planes whose normals point
towards one of the three axes.

To decide the dimensions of each section, we need to know the specifics of the 3D printer (max x , max y and
maxz printing size e.g., for Prusa i3 MK3 : 25 x 21 x 21 cm) and the dimension we have chosen for the final model
( f inalx , f inal y and f inalz printing size)
At this point we can derive, for each axis, how many planar cuts we have to perform:

#cut x =
¡

f inalx

max x

¤

− 1; #cut y =

�

f inal y

max y

�

− 1; #cutz =

�

f inal y

maxz

�

− 1;

then, for each axis, the distance between each cutting plane (i.e. the sizes of the final sections to be printed) will be:

stepx =
f inalx

#cut x
; stepy =

f inal y

#cut y
; stepz =

f inalz
#cutz

;

Finally, we can use each of these planes to perform a planar cut on the mesh trough bisect operators (see Figure 6).

Figure 6. The rectilinear grid constructed around a mesh

The downside of this process is that the two new meshes, generated by each bisection, present now at least one hole
where the planar cut has taken place. In Figure 7, for example, after one cut, the mesh present two different holes.

9https://www.trinckle.com/en/index.php
10https://en.wikipedia.org/wiki/Regular_grid
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Figure 7. Holes after a planar cut

As explained in Section 3.1 holes must be filled in order to make the geometry printable. To fix this, after every
cut and for both the new meshes, all the generated hole are traced, for every hole all the near edges associated with
only one face are selected so that a new face can be generated connecting these edges.

Here we are exploiting the property of a manifold mesh for which every edge will connect two and only two faces,
if one edge is associated with only one face then that edge is part of the hole perimeter. Knowing this, we can select
all these edges and grouping them based on vertex sharing. At this point, we have all the groups of connected edges
that are associated with only one face (i.e., the perimeter of each hole). Now we can insert a new face between each
group of edges to fix the holes.

As a remark, since Blender standard mesh system is not sufficient to perform any of the operations we need to
apply to correctly subdivide and repair the model, the original geometry must be translated into a Blender mesh 11

(or "Bmesh"): a robust and versatile representation of a mesh which blender uses for its internal mesh editing API.
One of the main capabilities of BMesh is full NGon support, which is a way to create and edit polygons with more
than four vertices. This helps to make the modeling process far less destructive and easy to work with. Along with
NGons, BMesh also supports modeling features used to bisect and repair the mesh in a faster and more reliable way.

3.3 Connecting Phase

Once sub-division has been performed, we end up with a lot of geometries to print, reconstruct the original mesh is
like doing a puzzle. Moreover, some cuts may have been made over a section of the mesh which now needs support
to rest in place: In Figure 8, for example, once we apply the cut through the plane shown, the arm of the character
will fall without tailored support for it.

Figure 8. Cut one part of a geometry which is not self-supported

11https://docs.blender.org/api/blender_python_api_current/bmesh.html
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The former problem can be simplified by labeling each mesh with his XYZ coordinates, where x, y, and z are the
indexes, in three dimensions, of the relative cells of the grid in which the original object was divided.

Figure 9. Labels of sections in 3D space

As for the latter problem, the idea here is to mimic the Lego12 brick system. A grid of small cylinders (see Figure
10) is added to one mesh and hollowed on his counterpart, effectively producing interlocking models so that they
can be manually assembled in one single object.

Figure 10. Lego-like grid of cilinders

In this phase we widely rely on mesh Boolean operations [5], these are fundamental operations in 3D modeling:
they combine two or more solid shapes (say A and B) by checking if a point x lies inside of each solid. In particular,
we use union:

Union: A∪ B :=
�

x ∈ R3|x ∈ A and x ∈ B
	

to add the grid of cylinders on one side of the cut, and difference :

Difference: A\B :=
�

x ∈ R3|x ∈ A and x /∈ B
	

to hollow them on the opposite side of the cut.

Difference is also used to add the label which describes the position of the section. In order to do this, we have
to transform a text into a 3D mesh, then we will add thickness to it and after having placed in the right spot we can
use the difference boolean modifier to hollow it in the mesh (see Figure 11)

12https://www.lego.com/it-it
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Here, the problem we have to face is where to place both the label and the grid of cylinders. Let’s, for example,
have a look at the mesh of figure 7. In this mesh we applied a bisection which generates two disconnected holes.
Hollow cylinders is not really a problem since if we arrange all the cylinders in a plane, only the ones which actually
intersect the mesh will produce a hollow.

On the other hand, add cylinders on the opposite mesh and hollow the labels are operation for which the locations
where we apply these operations really matters. The idea, then, is to trace the faces we added in Section 3.2 to repair
holes, hollow the label in the biggest face we added and append cylinders only if holes are big enough to support
them. The overall result will be something like figure 11 where both the label and the grid of cylinders are dig into
the base of the geometry.

Figure 11. Bottom side of a final section where both the label and the grid of cylinders are inserted

Notice that in this particular mesh we do not opt for a full grid of cylinders on all the surface of the cut, we just
need to apply enough to ensure the interlocking condition.

3.4 Wrapping Up

So far we have seen one possible workflow which is precisely crafted for working with generated urban models.
Anyway, as we already mentioned, the context of the 3D model can drastically change how the process must behave,
in fact, depending on the original geometry, some feature of this tool may be unnecessary, some other may need
specific settings or little adjustments which would improve the final result. As outlined above, different options in
the repair phase (Section 3.1) can improve some kind of 3D models but damage others. The same also holds for
Sub-division phase (Section 3.2) and Connection phase (Section 3.3). To have a better understanding of our current
solution we will now see how this process is applied to a metropolitan area 3D model, namely, the city of Lugano.

4 Case Study

To properly test this tool, we decided to work on a complex urban model (around 1 million of vertex) of the city
of Lugano which is automatically generated with Scala using the Swiss GIS data. Moreover, data for this model are
designed to construct spatial visualizations and they do not satisfy any printing requirement.

4.1 Background

Starting from the work of Minelli, using topological data from the Swiss Federal Office of Topography for the buildings
and google maps API 13 for the terrain generation, we are able to construct an accurate 3D model of Lugano city in
‘stl‘ format.

13GoogleMaps API https://cloud.google.com/maps-platform/maps/
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Figure 12. Reconstruction of Lugano city center (4km2)

The printer which we will use is a Prusa i3 MK314, which has a maximum print volume of roughly 11cm3

(21x20x25 cm) and the base of the final model we aim to print will be 1x1 m. Since our model is a large sec-
tion of a city, its height will be relatively small compared to its length and width. This means that we do not have to
cut the model on the z-axis since the capacity of the printer for that dimension is enough

4.2 Preprocessing

This mesh is really difficult to treat since, as mentioned above, it is automatically generated starting from data
collected for 3D visualizations and not for a precise reconstruction. In order to use this model we must first adjust
it. One of the biggest complications is that data used to construct the building’s grid does not precisely match with
the generated terrain i.e., some buildings may float over it leading to an impossible print.

Figure 13. Buildings flying over the terrain

14https://shop.prusa3d.com/en/

10

https://shop.prusa3d.com/en/


This happens because the API used to generate the terrain has a low usage limit which does not allow us to
reconstruct a faithful terrain representation, we sampled altitude coordinates in a grid with steps of 35 meters, then
each point on this grid is translated on the z-axis relative to the altitude of that point. This process forces us to
interpolate the terrain, leading to an approximation of the real surface shape. Figure 13 shows how some buildings
are flying over the terrain.

In order to address such a problem, we modelled a procedure in the repair phase which will find all these separate
components and push them towards the ground until they intersect it. A lot of other minor problems, like faces in
buildings which does not exactly match or impossible geometries, are automatically handled by our tool.

4.3 Settings

Given the final size of 1x1 m that we have chosen for the base of our model and the dimensions of our printer
(21x20x25 cm) we will perform four cuts on both the x and y-axis, this will sub-divide the model into 25 sections
of 400cm2 each. We will not perform any cut on the z-axis. As for the connecting phase, we decided to model a
Lego-like brick specifically for this model and we will use this to connect 4 mesh at a time where they intersect i.e.,
at the corners.

Figure 14. Final model highlighting a single section

4.4 Results

A printed version of the model shown in Figure 12 has been produced and results are encouraging: Despite some
negligible detail not fixed in the repairing phase (caused by the imprecise data in the buildings database) the overall
system works well and meets the requirements we set for this project.

5 Conclusion and Future Work

In this thesis, we tackled the problem of 3D print a large scaled urban model in a cheap and reliable way. We saw
that, especially in architecture, manufacture wide models is mandatory, and, actually, the usual process of manually
building them is extremely expensive both in term of time and money. With our tool, we outlined an effective
and cheaper way to achieve the same goal by relying on additive manufacturing. We explained how a 3D urban
reconstruction model can be generated through Switzerland GIS data, from the Swiss Federal Office of Topography,
for the buildings grid and geospatial information, from GoogleMaps, to model the terrain surface; We then pointed
out how this model can be repaired in order to made it printable and, after this phase, how from this model, using
the Blender API, we can generate interlocking and scaled section of the same model that, once printed, could be
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connected together to form a bigger version of the same original model. Finally, we presented a case study where a
printed version of the model shown in Figure 12 has been produced. Results are encouraging: Despite some negligible
detail not fixed in the repairing phase (caused by the imprecise data in the buildings database) the overall system
works well and meets the requirements we set for this project, however, we still have some upgrades to perform.

Even if this tool works with any geometry, as explained, is precisely developed for urban areas, hence a specific
way to subdivide into sections and model the joints point is adopted. However, while developing this project we
tested a lot of different procedures, each of those dealing with a different kind of 3D model. If the user can give
information about the geometry to work on, we could decide which process to use. For this reason, the next step
will be implementing it through a user interface, where the user could also input the general parameters like printer
capacity and final scale to adopt. We also mentioned B-mesh, this mesh system comes with a lot of possibilities and
a rich API, for the moment we just adopt this mesh-scheme to extract and adjust section, however, this has a lot
of potential and it can also be added in different components, repairing the original mesh could probably be a lot
faster and precise adopting B-mesh functionalities. At the moment we developed a standalone tool, soon we will
implement this as sub-routine in the project of Minelli, which actually provide ‘stl‘ models for both buildings and
terrain. We aim to create a simple service building an effective pipeline that generates, repair and subdivides urban
models.
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