
Bachelor Thesis

June 17, 2010

Commit 2.0 for Eclipse
Enriching commit comments with software visualization

Roberto Minelli

Abstract

Widely adopted versioning systems allow developers to write comments at commit time to describe
the changes that they have performed. The current limitation is that such comments can only be textual.
For example documenting a commit that involves multiple files is difficult: The developer needs to write
a text that describes all the modifications. Non descriptive or blank comments drastically limit the docu-
mentation of code evolution.

We have ported a prototype for Smalltalk to a mainstream IDE (Eclipse). Commit 2.0 tackles the
problem of the limited support for documenting software changes at commit time, by enriching commit
comments with software visualization and floating annotations. Our approach generates interactive
visualizations of the changes where the user can insert annotations in the context to which they pertain.

Advisor
Prof. Dr. Michele Lanza
Assistant
Marco D’Ambros

Advisor’s approval (Prof. Dr. Michele Lanza): Date:

Acknowledgements

Figure 1. Michele Lanza and Marco D’Ambros

First of all I would like to thank Prof. Dr. Michele Lanza, one of my favorite and most appreciated
professors, in the capacity of advisor of my Bachelor project. Three years ago he started guiding me
through the world of software systems, sharing some of his precious knowledge in the Programming
Fundamentals I course and, last semester, in the Software Atelier IV course.

Many thanks to Marco D’Ambros, the assistant of the project and of the two courses mentioned
above, that stimulates my enthusiasm for doing this work and for being always available, even from
South Africa.

I would like to thank my family and friends for their unconditional support and patience, being so
understanding during the busy times while I was studying, coding and writing.

Special thanks goes to Alessandro Trombini which has always been available to contain my outbursts
in the past three years of Bachelor.

Roberto Minelli
June 17, 2010

i

Contents

Acknowledgements . i

List of Figures v

1 Introduction 1
1.1 Goals . 2
1.2 Structure of the document . 2

2 Related Work 3
2.1 Visualizing Versioning System Data . 3
2.2 Enhancing Versioning and Awareness . 4

3 Commit 2.0 5
3.1 Commit 2.0 in a nutshell . 5
3.2 Visualizations . 6

3.2.1 Visualization Principles . 6
3.2.2 Examples . 7
3.2.3 Discussion . 8

3.3 Structure of the tool . 8
3.4 An example: MetricsExtractor . 9
3.5 Discussion . 13
3.6 Validation . 13

4 Conclusions 14
4.1 Contributions . 14
4.2 Future work . 15
4.3 Epilogue . 15

A Commit 2.0: Implementation 16
A.1 Selecting resources . 16
A.2 Getting remote files . 17
A.3 Parsing procedure . 17
A.4 Differencing engine . 18
A.5 Generating visualization . 20
A.6 Interacting with the visualization . 20
A.7 Publishing the visualization . 21
A.8 Versioning the source code . 21

Bibliography 22

iii

List of Figures

1 Michele Lanza and Marco D’Ambros . i

1.1 An overview of Commit 2.0 usage . 2

3.1 An overview of Commit 2.0 . 5
3.2 Principles of the Coarse- and Fine-grained visualizations . 6
3.3 A coarse-grained example visualization . 7
3.4 A fine-grained example visualization spawns from the model package of Figure 3.3 7
3.5 An overview of the structure of the tool . 9
3.6 Coarse-grained view of the system at commit-time . 10
3.7 Coarse-grained view with annotations . 10
3.8 Fine-grained view of the model package with annotations . 11
3.9 Fine-grained view of the utile package with annotations . 11
3.10 The commit comment and blog post title prompt . 12
3.11 A Posterous blog post published by Commit 2.0 . 12

A.1 An overview of the workspace resources . 16
A.2 An overview of the SVNClientAdapter . 17
A.3 An overview of the parsing procedure . 18
A.4 An overview of a DiffEngine object . 18
A.5 A DiffNode in details . 19
A.6 An overview of the publishing procedure . 21

v

Chapter 1

Introduction

A number of software projects use versioning systems, also known as Software Configuration Manage-
ment tools (SCM), such as SVN1 and CVS2, to handle code evolution. Developers use SCMs as means
of synchronization among them and to document changes through commit comments. Current version
control tools do not store all the information generated by developers [2].

The support for documenting software changes offered by versioning systems is limited. The only
tool that a developer has at commit time to document changes is text. It is often left blank due to lack
of time or resources3. In addition, commits involving multiple files are difficult to document since this
text cannot be related to a specific entity or inserted in a specific context. Sometimes when we browse
the history of a software stored in a repository we see comments like "bugabugabuga" or "changes" or
"arg"4.

To address this problem researchers proposed Commit 2.0 that enriches commit comments with
software visualization [1]. They provide a prototype implementation for the Pharo IDE5 and we ported
it to Eclipse. Our tool automatically produces visualization of the changes at different granularity levels:
Such views provide a context which makes documentation easier. In general, Software Visualization
provides a support to have a comprehensible representation of the structure of and the distribution of
efforts among a software system. Commit 2.0 also supports floating annotations in the visualizations.
The user can insert the annotations in the views relating them to their accurate context.

Our tool enriches the documentation process with visualizations. Versioning systems do not support
views as comments. We adopted a Posterous6 blog to store the visualizations. Posterous is a free
service that creates instantaneous blog posts upon receiving an email with any number of attachments.

1See http://svncorp.org
2See http://www.nongnu.org/cvs/
3In the Eclipse project 20% of commit comments is left blank
4Real commit comments committed in the Vuze project (5300 out of >13000 are left blank) - http://www.vuze.com
5See http://www.pharo-project.org/home
6See http://posterous.com/

1

http://svncorp.org
http://www.nongnu.org/cvs/
http://www.vuze.com
http://www.pharo-project.org/home
http://posterous.com/

1.1 Goals

The main goal of the project is to enrich Eclipse to enhance the support given to developers to document
changes at commit time with software visualization. The plug-in generates interactive views that can be
enriched with floating annotations (like sticky-notes) that improve traditional commit comments.

The main goal is divided in sub-goals:

1. Creation of a model to recognize the structural differences, and not just the textual ones, between
two versions of a project.

2. Visualization of the changes in an exhaustive and intuitive way.

(a) The user has to interact with the visualizations.

(b) The user can annotate the views.

(c) The user can upload the visualizations to Posterous.

3. Integration from the IDE to an Eclipse Plug-in.

Figure 1.1 shows the workflow of a typical usage of Commit 2.0. A developer codes in Eclipse (1).
At the end of the session he invokes Commit 2.0 (2): the plug-in generates a visualization (3) that the
user can edit and enrich with annotations (4). In the end the plug-in publishes the visualizations on the
blog (5) and versions the source code in the SCM repository (6).

SCM repository

Programming
in Eclipse

Editing the
Visualization

Commit 2.0

Generating the
visualization

Publishing the
visualization on a blog

1

2

3

4

5

Versioning the
source code

6

Figure 1.1. An overview of Commit 2.0 usage

1.2 Structure of the document

The remainder of this document is organized as follow: We give an overview of the work related to
Commit 2.0 (Chapter 2) and we describe in detail the plug-in itself (Chapter 3). Then we draw the
conclusions (Chapter 4) and we introduce possible extensions of it (Section 4.2). The final part of the
document (Appendix A) discusses some implementation details.

2

Chapter 2

Related Work

Commit 2.0 is an approach to enhance the support given to developers, at commit time, to document
changes by means of software visualizations. It is related to (1) tools that visualize versioning system
data and (2) enhancement of versioning systems and awareness of changes.

2.1 Visualizing Versioning System Data

CVSViewer3D is a tool [3] which extracts, processes and displays information from CVS repositories.
The tool relies on existing front-end visualization software (SourceViewer3D). The user can define mul-
tiple views of the change history data and at different granularity levels (e.g., file, line of text, method,
class).

Chronia uses the mapping between the changes and the author identifiers from CVS log-files to
define a measurement of code ownership. The tool presents the Ownership Map visualization [4] that
helps understanding when and how different developers interacted in which way and in which part of the
system.

As software evolves over time, the identification of expertise becomes an important problem. Alonso
et al. introduced a method to derive the expertise of the committers from the classification of the source
code tree as a path [5]. They also presented a visualization that helps to further explore the repository
via committers and categories. They implemented a prototype and validated the approach using the
Apache HTTP Web Server project.

In [6] Taylor and Munro combined visualization and animation to study the evolution of a CVS repos-
itory. The technique, called Revision Towers, uses colored bars of different thickness and height to
represent the size, changes and authors of a piece of code. These bars are animated to show the evo-
lution of the software repository.

Rysselberghe and Demeyer [7] demonstrated how a simple visualization allows researchers to rec-
ognize relevant changes. The authors validated the approach on the change history of Tomcat to identify
unstable components, coherent entities, design and architectural evolution, and fluctuations in team pro-
ductivity.

Voinea et al. proposed an open framework, CVSgrab, for visual data mining of CVS repositories [8].
They focused on three aspects: data extraction, analysis and visualization. The tool supports analysis
and interactive visualization of software repositories. The user can do querying and filtering and cus-

3

tomize the views through a large set of metrics extracted from the CVS data.

Hattori et al. redefined the concept of code ownership [9], by enriching CVS data with real-time
interaction information extracted from the IDE. They proposed a tool, called Syde, that records every
change by every developer in multi-developer projects. The authors presented a visualization of the
refined ownership.

There is a substantial difference between our approach and the approaches illustrated above. Com-
mit 2.0 visualizes the changes at commit time enhancing the support for their documentation while the
mentioned approaches visualize the data a posteriori to support retrospective analysis.

2.2 Enhancing Versioning and Awareness

In [10] Schneider et al. discussed the benefits of analyzing local interaction histories. They argued that
developer interaction with the local copy is valuable information when mining software repositories. The
authors provided a prototype implementation to capture and analyze these local interactions.

Robbes et al. implemented a system to record fine-grained changes in the source code in real-time,
instead of reconstructing them from coarse-grained, file-based versioning system archives [12]. This
approach was used in a variety of applications [11] that improve versioning systems by refining the code
model, while Commit 2.0 enriches the documentation of code changes with visualization.

Current SCMs are designed to isolate developers from each other. Sarma et al. argued that such
isolation is both good and bad. With Palantír [13] they wanted to overcome the bad isolation, while re-
taining the good one. Palantír is a workspace awareness tool that enriches configuration management
systems by informing a developer of what other developers change which artifact. It calculates a simple
measure of severity of the changes and visualizes the information in a non-obtrusive fashion.

In [14] Lanza et al. enhanced the approach proposed by Robbes recording source code changes as
they happen and broadcasting them to other developers in the team so that they are aware of possibly
existing conflicts before committing the code. The authors also proposed three lightweight visualizations
to broadcast real time development information to developers.

Knodel et al. [15] propose a tool that continuously monitors changes made by developers and pro-
vides feedback to them in case structural violations are detected. They validated the approach with six
component development teams and they argued that constructive compliance checking helps to reduce
the structural violations inserted during the development by 60%.

While the goal of the approaches mentioned above is to provide awareness of changes, the goal of
Commit 2.0 is to document the changes as they are committed by means of software visualizations.

4

Chapter 3

Commit 2.0

In this chapter we describe our approach in detail and we discuss the benefits of visualization over text
(Section 3.2.3) as well as pros and limitations of our approach (Section 3.2.3).

3.1 Commit 2.0 in a nutshell

Commit 2.0 is an IDE enhancement which enriches commit comments with visualization, providing a
context to changes and a better means to communicate. It is built on top of the Eclipse IDE as shown in
Figure 3.1, and does not change the standard commit mechanism. In the current implementation it only
supports Subversion (SVN)1 repositories.

 Eclipse IDE

Versioning the
source code

Publishing
visualization(s)

Visualization(s)Source code

Commit 2.0

Figure 3.1. An overview of Commit 2.0

1See http://svncorp.org/

5

http://svncorp.org/

3.2 Visualizations

The aim of our tool is to enrich commit comments with software visualization. In this section we describe
the principles behind the visualizations and we give some examples.

3.2.1 Visualization Principles

Our tool provides visualizations at two different granularity levels:

• Coarse-grained, concerning the overall structure of the project.

• Fine-grained, concerning the inner structure of the packages composing the project.

NOM

NOA

LOC

Package

Class

Class
M
et
ho
d

Figure 3.2. Principles of the Coarse- and Fine-grained visualizations

The sizes of the visualizations are mapped to software metrics. Software metrics measure proper-
ties of a software system by mapping them to numbers. In both visualizations we distinguish containers,
rectangles used to depict entities (packages or classes), and elements, rectangles inside them to depict
their content (classes or methods).

The Coarse-grained view (Figure 3.2 - left) shows the entire project. A container at this granularity
level represents a package, whereas the elements represent classes. The height of a class is propor-
tional to its number of methods (NOM) and the width to its number of attributes (NOA).

In the Fine-grained view (Figure 3.2 - right) containers represent classes where the elements repre-
sent methods. The width of the methods is fixed while the height is proportional to its number of lines of
code (LOC).

All visualizations are generated using a logarithmic scale: This means that, for example, a rectangle
(in the coarse-grained view) that has double the height of another one has 10 times more NOM. The
metrics can cover a large range of values that might deform the views making most of it unreadable. We
adopted a logarithmic scale to reduces this values to a more manageable range.

The generated views respect a color schema where red represents deletion (the corresponding enti-
ties have been removed), green represents addition, blue modification and white represents no change.
If an entity is modified the container has an indirect change, represented in cyan. In general we use
lighter colors for the containers. Gray is the color used for unchanged containers.

6

3.2.2 Examples

In this section we provide some examples of the principles presented in Section 3.2.1.

ch.inf.model ch.inf.util ch.inf.view

Class Foo Class Bar

Figure 3.3. A coarse-grained example visualization

Figure 3.3 is an example of a coarse-grained visualization of a system composed by three packages.
In the package model we can make some inferences about classes Foo and Barfrom from the sizes of
the classes. The former has 10 times more attributes than Class Bar while the latter has 10 times more
methods than the Class Foo. These inferences are made possible by the logarithmic mapping between
the sizes of the elements and the software metrics.

The colors used for the visualizations help to detect what kind of changes happened. Figure 3.3
shows that the util Package has been added in this revision and that the view Package is unchanged.
The model Package has indirect changes since some classes are modified (deleted or added) and it is
depicted with color cyan.

ch.inf.model ch.inf.util ch.inf.view

Foo Bar

Alpha Beta

Figure 3.4. A fine-grained example visualization spawns from the model package of Figure 3.3

7

We provided fine-grained visualizations to spot changes more in detail. The user can spawn the
contents of the entities from coarse-grained views. Figure 3.4 shows a spawn of the contents of the
model package from the visualization in Figure 3.3. This shows that class Bar, with 30 methods, has 10
times more methods than class Foo, having 3 methods, as anticipated before. With the aid of the color
schema we can detect the type of changes happened to the classes. Class Foo is unchanged (gray)
while Bar contains indirect changes (cyan). Alpha is a class inserted in the current revision (green) while
Beta is a deleted class (red).

3.2.3 Discussion

We think that our visualizations provide benefits over text providing a contribution in the context of soft-
ware changes. Developers can have a complete view of the system (coarse-grained) to see where
changes happened and obtain more details using fine-grained visualizations. This, together with anno-
tations, can really push forward the process of documenting changes making developers’ life easier and
more productive. The interaction plays a fundamental role in the documentation: The user can decide
the positioning of the entities and insert in the right context detailed annotations (described in detail in
Section 3.4) to document the changes.

• Scalability:

– Different granularities of the visualizations make the approach scalable.

• Benefits of our visualizations:

– Are more descriptive than commit comments.

– Provide a context for annotations.

– Provide an overview of how the efforts are distributed among the project.

– Allow to determine if changes happen in a crucial part of the system or not.

– The color schema provides an intuitive way to spot the kind of changes happened.

• Limitations:

– The blog used to store visualizations is not an optimal solution.

– Visualizations are exported as images: There is no possibility to change them afterwards.

3.3 Structure of the tool

Figure 3.5 shows the main window of Commit 2.0 that is composed of a space for the interactive visual-
izations (1) and a toolbar (2), featuring the following components:

(a) A package at coarse-grained view with (b) the contextual menu to spawn it.

(c) A class at fine-grained view.

(d) Some annotations.

(e) A preview of the selected color schema and a combo box to change it.

(f) Some controls to interact with the visualizations:

8

Bar

ch.inf.model

This is another
example of
annotation

This is an example of a
floating annotation

1

2

a

b

c

d

d

e

f

g

h

Figure 3.5. An overview of the structure of the tool

– Change color schema

– Adjust the zoom

– Hiding unchanged entities

– Toggle selection mode (to spawn more than one entity)

(g) Buttons to configure the email sender and export the visualizations on a file.

(h) A button to publish the visualizations and version the source code.

3.4 An example: MetricsExtractor

In this section we provide an application of the plug-in in a concrete situation: the implementation, and
documentation, of the MetricsExtractor of the plug-in itself. It is the module responsible to extract, from
the source code of the project, the software metrics used to scale visualizations.

We implement inside Eclipse the MetricExtractor class in the util package. We re-factor the related
classes all around the system and we test our new implementation. We are ready to commit, and docu-
ment, the changes. We invoke Commit 2.0: it automatically generates a coarse-grained visualization of
the system, shown in Figure 3.6.

An user can re-arrange (drag & drop) the entities inside the canvas to suit his needs. We can remove
the unchanged package, dialogs, from the visualization and focus our attention on the documentation of
the 4 other packages. In this visualization we add some general annotations for coarse-grained changes:
Figure 3.7 shows the result.

As for entities, also annotations can be drag & dropped around the canvas. Once we annotated the
coarse-grained view, we found useful to document more in deep the changes in the model and in the
util packages.

9

Figure 3.6. Coarse-grained view of the system at commit-time

Figure 3.7. Coarse-grained view with annotations

We spawn the content of the model, by right-clicking on it. The plug-in generates a fine-grained
view of this package where we can remove unchanged entities and concentrate our attention on the four
changed classes. Also in this visualization we can add as many floating annotations as we want. Figure
3.8 shows the results while Figure 3.9 shows the same process applied also to the util package.

10

Figure 3.8. Fine-grained view of the model package with annotations

Figure 3.9. Fine-grained view of the utile package with annotations

In the end we press the Commit 2.0 button, situated on the coarse-grained window, to allow the
plug-in to version the source code and publish the visualizations. The plug-in shows a window to enter
the commit comment and the blog post title (Figure 3.10). A proposed commit comment is generated
from the annotations in the coarse-grained view. The traditional commit mechanism is not altered and
all the visualizations are published as a blog post as shown in Figure 3.11. At the end of each post there
is the possibility to comment the post and to share it on different social networks (e.g. Facebook2 or
Twitter3) enhancing collaboration among the developer team.

2See http://www.facebook.com/
3See http://twitter.com/

11

http://www.facebook.com/
http://twitter.com/

Figure 3.10. The commit comment and blog post title prompt

Figure 3.11. A Posterous blog post published by Commit 2.0

12

3.5 Discussion

Our approach feeds benefits to the traditional documentation process but has some limitations.

Benefits

• Scalable: We claim that different granularities of the visualizations (coarse- and fine-grained
views) allow the visualization of changes in projects with more than a hundred classes, even if
we tested it with smaller projects.

• User-friendly: Commit 2.0 is very intuitive to use.

• Functional: We used it during the development and it fulfills its purposes and functions.

• Unaltered basis: The system does not alter the traditional commit process to version the source
code.

Limitations

• Time consuming: It requires developers to spend more time in the documentation process with
respect to the traditional form of documentation (commit comments). We argue that this time in-
vestment is a valuable contribution in favor of a good documentation of the changes. Our approach
facilitates synchronization and collaboration among developers making them more productive.

• Pre-requisites: Commit 2.0 requires that developers learn the views: They need to understand
how colors are used in the visualizations and how software metrics map to the sizes of the entities.

• Blog: The use of a blog, not directly connected with the repository, is a limitation. At this stage of
development a user cannot see a connection between a repository revision and a blog post.

3.6 Validation

The main validation approach adopted, as a proof of concept, was using the plug-in to monitor and
document the changes of the plug-in itself during the development. The dedicated website4 shows the
evolution of Commit 2.0.

We plan to do a user study to see if developers care for such support and to see whether it scales
for systems with more than a hundred classes. Moreover this study will test the effectiveness of docu-
menting changes using Commit 2.0.

The plug-in is available also on the Eclipse Marketplace5. We hope to receive some feedbacks to
see what the users find attractive of the approach and what they desire to change or improve.

4See http://commit20eclipse.posterous.com/
5See http://marketplace.eclipse.org/content/commit-20

13

http://commit20eclipse.posterous.com/
http://marketplace.eclipse.org/content/commit-20

Chapter 4

Conclusions

SCM tools are widely used in software projects. Using a repository to monitor code evolution and as a
means of synchronization among developers has become a standard approach in the developing pro-
cess. Repositories provide a limited support for documenting changes at commit time: a text (commit
comment) that a developer writes and it is stored in the repository. Finding a descriptive piece of text
for a commit of an entire coding session, possibly involving multiple files, is a non trivial task and often
developers, for lack of time or resources, leave these comments blank.

We addressed this problem with Commit 2.0: An IDE enhancement that enriches commit comments
with software visualization. We implemented a plug-in to port Commit 2.0 from the Pharo IDE to the
Eclipse IDE. It allows the developer to generate a coarse-grained visualization of the changes he/she
performed. The developer can re-arrange the position of the entities and add floating annotations in the
specific context in which they are needed. If necessary he/she can spawn to a finer granularity level
to have a more precise view of the changes. The user can then version the source code as usual and
publish all the annotated visualizations on a blog allowing other developers to spot recent changes with
a detailed documentation by browsing it.

4.1 Contributions

The main contributions of this work can be summarized as:

• The porting of Commit 2.0 for Eclipse, initially developed for the Pharo IDE1.

• The implementation inside, and full integration with, a mainstream IDE.

• The introduction in Eclipse of a visual approach to support the documentation of software changes
at commit time.

• The automatic generation of visual differences between two versions of a Java Project, Package
or Class.

• The validation of our approach, as a proof of concept, on the plug-in itself.

1The overall work was more challenging in Java than in Smalltalk: The reflection property of Smalltalk (the process by
which a computer program can observe and modify its own structure and behavior) supports Marco D’Ambros et al. [1] to
easily detect differences between two versions of a project and implement the first prototype.

14

4.2 Future work

This version of the tool has some limitations that can be removed and allows a wide number of exten-
sions.

• Repository interface: In the current implementation the plug-in supports only Subversion (SVN).
In future versions we would like to introduce support for different versioning systems such as CVS
and Git2.

• Interaction: We want to give more freedom to the user editing the visualizations. We want to add
support for relating annotations to entities. A possibility would be drawing arcs from a comment
to one or more entities to which this comment is related and then use this relations to automati-
cally propose to the user a more descriptive and exhaustive comment than the traditional commit
comment he/she would write.

• Versioning the visualizations: All the visualizations that the user creates or spawns are exported
in a blog, to have a visual track of the evolution of the software system. In following releases we
want to version also the visualizations. We can create an ad-hoc folder in the root of the project
containing the views and version this folder.

• Enhancing versioning systems: The long term goal would be enhancing versioning systems to
support visualizations as comments. If versioning systems would natively support this feature
we could remove the temporary blog to store visualizations and get rid of visualizations from the
repository (as proposed above).

4.3 Epilogue

In this thesis we have ported a prototype for Smalltalk to a mainstream IDE (Eclipse) to reach a larger
audience. Commit 2.0 is an approach to tackle the problem of limited support for documenting changes
at commit time, by enriching commit comments with software visualization.

There are many steps to take in this direction since Commit 2.0 is open to a wide number of exten-
sions, as discussed in Section 4.2.

We believe that in the following years this area will be a hot research topic and our Commit 2.0 is
making headway in the field.

2See http://git-scm.com/

15

http://git-scm.com/

Appendix A

Commit 2.0: Implementation

In this appendix we describe some implementation details. Section A.1 shows the procedure of selecting
the resources to commit. Section A.2 describes the process of obtaining the remote files. The parsing
procedure is described in Section A.3 while Section A.4 shows how the plug-in computes the structural
differences between two projects. Section A.5 illustrates some details of the visualizations while Section
A.6 describes how to interact with them. Section A.7 shows how the visualizations are published and
Section A.8 describes how the plug-in versions the source code.

A.1 Selecting resources

Eclipse’s plug-ins operating on the Workspace have to deal with org.eclipse.core.resources. We can do
an analogy between the Eclipse Workspace and the File System. In the Workspace there are files and
folders organized in the same way of a File System. There can be subdirectories and hidden files.
The classes in the package mentioned above are used to programmatically manipulate the files in the
Eclipse Workspace as a user does in a traditional file system: copy, paste, move, rename, get the
contents and so on. In addition to files and folders in the workspace there are also projects (special kind
of folders) and a resource called workspace root, analogous to the root directory of your File System.
Commit 2.0 uses all of them to correctly handle the resources the user wants to process.

org.eclipse.core.
resources

getType()
type : int
IResource

IFile IWorkspacemembers()
IFolder

members()
IProject

Figure A.1. An overview of the workspace resources

Figure A.1 shows the architecture of the package used by Eclipse to handle the Workspace files.
Commit 2.0 verifies which type of resource the user selects. It is able to operate on single packages

16

(IFolder) or entire projects (IProject). Once this is determined, the plug-in acts in a dedicated manner for
different kind of choices generating either coarse- or fine-grained views.

A.2 Getting remote files

To get the remote files the plug-in executes a SVN Checkout operation by means of a ISVNClientAdapter
provided by org.tigris.subversion. Figure A.2 shows briefly how to get one instance of it and which
method it is used to perform the needed operation.

ISVNLocalResource localRes = SVNWorkspaceRoot.getSVNResourceFor((IResource) resource);
ISVNRemoteResource svnRemoteRes = localRes.getRemoteResource(localRes.getRevision());

ISVNClientAdapter svnClient = svnRemoteRes.getRepository().getSVNClient();

checkout(SVNUrl, File, SVNRevision, int, boolean, boolean)
ISVNClientAdapter

Figure A.2. An overview of the SVNClientAdapter

The parameters used in the checkout methods are, in order, the SVNUrl (1) of the resource we want
to checkout, obtained invoking the getUrl() method on a ISVNRemoteResource, the File (2) in which the
remote resources will be checked out, the revision (3) to which we want to check it out, the depth (4),
as an integer (i.e. DEPTH_INFINITY constant from ISVNCoreConstants) and two booleans for keeping
the locks (5) and for forcing the checkout (6).

To optimize the performances, since checking out big projects may require long time, if the user
selects directly only a package this specific package will be checked out. If the user selects a project,
instead, the entire project will be checked out. Even in this situation there is an optimization: If the
user wants to spawn one or more entities the communication with the repository does not take place
anymore. The plug-in obtains the differences from the project already checked out.

A.3 Parsing procedure

Figure A.3 represents the overall parsing process together with some relevant methods defined in the
FolderParser class: One of the classes responsible for the parsing.

The input that comes from the selection described in Section A.1 is processed and modeled by the
FolderParser class. This class first determines whether it has to work on a project or on a package, and
if it is the second case whether the user needs a coarse- or fine-grained visualization since the parsing
process is different. The two parameters of the methods on top of Figure A.3 are, respectively, the left
(local) and the right (remote) terms of comparison. The FolderParser class defines some convenience
methods to manipulate and browse the Workspace. Most of them uses the members() method, intro-
duced in Figure A.1, to get the contents of a directory (or project).

The parsing procedure produces an object of type DiffEngine for each parsed package. A DiffEngine
object has the structure illustrated in Figure A.4, having a name and some fields to store the modified
resources within the package.

17

void : parseFolder(Object, Object, ViewEngine, boolean)
void : parsePackage(Object, Object, boolean)
void : parseProject(Object, Object)

...

FolderParser

project?Input

parsePackage
(..., ..., true)

coarse-
grained?

parsePackage
(..., ..., false)

parseProjectparseFolder YES

NO YES

NO

Figure A.3. An overview of the parsing procedure

...

String name;
ArrayList<IResource> coarsechanges;
HashMap<IResource, DiffNode> changes;
ArrayList<IResource> nochanges;
ArrayList<IResource> deletions;
ArrayList<IResource> additions;

DiffEngine

HashMap<IResource, DiffNode> changes; Key Value
Local resource DiffNode

Figure A.4. An overview of a DiffEngine object

Figure A.4 highlights the unique relation used to store fine-grained changes. At this granularity level
are needed both the IResource, to extract the metrics later on, and the DiffNode (discussed more in
depth in Section A.4) used to store the changes of the corresponding IResource (a class).

A.4 Differencing engine

The differencing engine relies on org.eclipse.compare1. The package provides support for perform-
ing structural and textual compare operations on arbitrary data and displaying the results. It uses a
org.eclipse.compare.structuremergeviewer.Differencer, a generic two-way or three-way differencing en-
gine used by calling one of the findDifferences() methods and passing in the objects to compare. The
initial rough approach, to understand how this engine works, was visualizing the DiffNode using a Struc-
tureDiffViewer 2 that allows to easily browse the DiffNode created after the comparison.

Figure A.5 shows the result of the expansion of a DiffNode generated from the comparison of two
classes. From this analysis we could determine how the differencing engine constructs this trees and
I how we can efficiently extract the changes from them. They are parsed from the plug-in in order to
construct the DiffEngines described in Section A.3.

1See http://help.eclipse.org/help33/index.jsp?topic=/org.eclipse.platform.doc.isv/reference/

api/org/eclipse/compare/package-summary.html
2A diff tree viewer that can be configured with a IStructureCreator to retrieve a hierarchical structure from the input object

(an ICompareInput) and perform a two-way or three-way comparison on it.

18

http://help.eclipse.org/help33/index.jsp?topic=/org.eclipse.platform.doc.isv/reference/api/org/eclipse/compare/package-summary.html
http://help.eclipse.org/help33/index.jsp?topic=/org.eclipse.platform.doc.isv/reference/api/org/eclipse/compare/package-summary.html

Figure A.5. A DiffNode in details

19

A.5 Generating visualization

The plug-in allows the user to generate visualizations at two different granularity levels: Coarse- and
fine-grained. Coarse-grained views show packages as containers and classes inside them. The height
of the classes is proportional to the number of methods (NOM) and the width to the number of attributes
(NOA). Fine-grained views show classes as containers and methods inside them. The width of the meth-
ods is fixed while the height is proportional to the number of lines of code (LOC). For more information
on visualization principles see Section 3.2.1.

If the user selects a Java Project the plug-in automatically generates a coarse-grained view of the
system. To do that the ViewEngine receives all the information computed from the core of the application
and produces a visualization powered by the Standard Widget Toolkit (SWT)3. To do so it parses one
package at the time to determine which classes are contained in it and computing the needed software
metrics. In particular, for the coarse-grained views, number of attributes and the number of methods.
These metrics are obtained using methods from the org.eclipse.jdt.core.IType package.

Analogously, for the fine-grained views, the model is passed to the ViewEngine that parses all the
classes within a given package to compute the lines of code of each method and represent the entities.
A fine-grained view is automatically generated if the user selects a package instead of a project.

A.6 Interacting with the visualization

The visualizations generated from the plug-in are interactive. The user can move around the entities by
simple drag and drop gestures, zoom in and out using the scroll wheel (or moving the slider on the GUI,
see Figure 3.5), change the color schema and show or hide the unchanged entities that are not relevant
to document the changes.

The visualizations can be enriched with floating annotations. These annotations scale, together with
the entities, according to the zoom level and can be edited or deleted.

We provided to the user some zooming functionalities. He/she can select the best level of zoom for
his layout with a zoom-to-fit functionality. A best-fit function that suggests the user the best position for
the entities together with the right quantity of zoom will be added in future releases.

3See http://www.eclipse.org/swt/

20

http://www.eclipse.org/swt/

A.7 Publishing the visualization

Once the visualizations are generated and annotated the plug-in publishes them on a blog in order to
have them in a convenient and easily accessible place for all developers of the project. For this release a
blog is used since currently no SCM support visualizations for comments. We used Posterous, a service
that creates blog posts upon receiving emails. For this purpose we implemented an e-mail sender using
the JavaMail (javax.mail) library. Figure A.6 illustrates an overview of the publishing procedure.

Internet Blog
post

Interactions and
annotations

MIME
Message

Mail
config

Raw
visualization(s)

Raw
visualization(s)
Raw view(s)

Final
view(s)

Email sender

Figure A.6. An overview of the publishing procedure

A.8 Versioning the source code

The whole Commit 2.0 procedure does not change the standard commit mechanism. While the visual-
izations are published on the blog, the source code is versioned on the SCM repository. To accomplish
this task we implemented the commit operation on top of Subclipse 4, a well known Eclipse plug-in, to
support Subversion in the Eclipse IDE. We plan to remove the dependency with this plug-in.

4See http://subclipse.tigris.org/

21

http://subclipse.tigris.org/

Bibliography

[1] Marco D’Ambros, Michele Lanza, Romain Robbes, Commit 2.0. In Proceedings of Web2SE 2010
(1st International Workshop on Web 2.0 for Software Engineering), pp. 14 - 19, IEEE CS Press,
2010.

[2] Romain Robbes, Michele Lanza, A Change-based Approach to Software Evolution. In Electronic
Notes in Theoretical Computer Science (ENTCS), Vol. 166, pp. 93 - 109, January 2007. Elsevier
Science Direct, 2007.

[3] Xie, Xinrong and Poshyvanyk, Denys and Marcus, Andrian, Visualization of CVS Repository Infor-
mation, In Proceedings of WCRE 2006, pp. 231–242, IEEE CS, 2006.

[4] Tudor Gîrba and Adrian Kuhn and Mauricio Seeberger and Stéphane Ducasse, How Developers
Drive Software Evolution, Proceedings of International Workshop on Principles of Software Evolu-
tion (IWPSE 2005), pp. 113-122, IEEE Computer Society Press, 2005.

[5] Alonso, Omar and Devanbu, Premkumar T. and Gertz, Michael, Expertise identification and visu-
alization from CVS, Proceedings of the 2008 international working conference on Mining software
repositories (MSR 2008), 2008, pp. 125-128, ACM.

[6] Taylor and Munro, Revision towers, In Proceedings 1st International Workshop on Visualizing Soft-
ware for Understanding and Analysis, 2002, pp. 43-50, IEEE Computer Society.

[7] Los Alamitos CA, Van Rysselberghe, Filip and Serge Demeyer, Studying Software Evolution In-
formation By Visualizing the Change History, Proceedings 20th IEEE International Conference on
Software Maintenance (ICSM ’04), pp. 328-337, IEEE Computer Society Press, 2004.

[8] Lucian Voinea and Alexandru Telea, An open framework for CVS repository querying, analysis
and visualization, Proceedings of the 2006 international workshop on Mining software repositories
(MSR 2006), 2006, pp. 33-39, ACM.

[9] Lile Hattori and Michele Lanza, Mining the History of Synchronous Changes to Refine Code Owner-
ship, Proceedings of MSR 2009 (6th IEEE Working Conference on Mining Software Repositories),
pp. 141-150, IEEE CS Press, 2009.

[10] Kevin Schneider and Carl Gutwin and Reagan Penner and David Paquette, Mining a Software
Developer’s Local Interaction History, Proceedings of the First International Workshop on Mining
Software Repositories (MSR 2004), 2004.

[11] Romain Robbes, University of Lugano, Switzerland, Of Change and Software, 2008.

[12] Romain Robbes and Michele Lanza and Mircea Lungu, An Approach to Software Evolution Based
on Semantic Change, Proceedings of FASE 2007 (10th International Conference on Fundamental
Approaches to Software Engineering), pp. 27-41, 2007.

22

[13] Anita Sarma and Zahra Noroozi and André van der Hoek, Palantír: Raising Awareness among Con-
figuration Management Workspaces, Proceedings of the 25th International Conference on Software
Engineering (ICSE 2003), pp. 444-454, IEEE Computer Society, 2003.

[14] Michele Lanza, Lile Hattori and Anja Guzzi, Supporting Collaboration Awareness with Real-time Vi-
sualization of Development Activity, Proceedings of CSMR 2010 (14th IEEE European Conference
on Software Maintenance and Reengineering), IEEE CS Press, 2010.

[15] Jens Knodel and Dirk Muthig and Dominik Rost, Constructive Architecture Compliance Checking –
An Experiment on Support by Live Feedback, Proceedings of ICSM 2008, pp. 287-296, 2008.

23

	Acknowledgements
	List of Figures
	Introduction
	Goals
	Structure of the document

	Related Work
	Visualizing Versioning System Data
	Enhancing Versioning and Awareness

	Commit 2.0
	Commit 2.0 in a nutshell
	Visualizations
	Visualization Principles
	Examples
	Discussion

	Structure of the tool
	An example: MetricsExtractor
	Discussion
	Validation

	Conclusions
	Contributions
	Future work
	Epilogue

	Commit 2.0: Implementation
	Selecting resources
	Getting remote files
	Parsing procedure
	Differencing engine
	Generating visualization
	Interacting with the visualization
	Publishing the visualization
	Versioning the source code

	Bibliography

