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Abstract—Over the past decades, researchers proposed nu-
merous approaches to visualize source code. A prominent one
is CODECITY, an interactive 3D software visualization that
leverages the “city metaphor” to represent software system as
cities: buildings represent classes (or files) and districts represent
packages (or folders). Building dimensions represent values
of software metrics, such as the number of methods or the
lines of code. There are many implementations of CODECITY,
the vast majority of them running on-screen. Recently, some
implementations visualizing CODECITY in virtual reality (VR)
have appeared. While exciting as a technology, VR’s usefulness
remains to be proven.

The question we pose is: Is VR well suited to visualize
CODECITY, compared to the traditional on-screen implementation?

We performed an experiment in our interactive web-based
application to visualize CODECITY. Users can fetch data from
any git repository and visualize its source code. Our application
enables users to navigate CODECITY both on-screen and in an
immersive VR environment, using consumer-grade VR headsets
like Oculus Quest. Our controlled experiment involved 24 par-
ticipants from academia and industry. Results show that people
using the VR version performed the assigned tasks in much less
time, while still maintaining a comparable level of correctness.

Therefore, our results show that VR is at least equally well-
suited as on-screen for visualizing CODECITY, and likely better.

Index Terms—codecity, city metaphor, software visualization,
software evolution, reverse engineering, virtual reality, web, 3D

I. INTRODUCTION

The code city metaphor is a well known technique for
visualizing source code metrics in a 3D environment. It was
first used by Knight and Munro in 1999 [1], and became
popular with CODECITY [2], to date the most impactful tool
developed on top of this metaphor, which inspired many other
similar approaches [3]–[5]).CODECITY creates visualizations
that are strongly reminiscent of actual cities by using layouts,
topology, and metric mappings applied at an appropriate level
of granularity. It shows software systems as cities that can
be intuitively explored [6], by mapping metrics of artifacts
(classes, files, packages) to features of the buildings (height,
size, color), and placing those buildings in locations related to
the position of artifacts in the system hierarchy (i.e., grouped
according to the nesting level of the artifact). Thus, the city
metaphor offers a clear notion of locality, supports orientation,
and makes explicit the underlying structural complexity.

In the last years new technologies (WEBXR [7], WE-
BGL [8]) have become available in web browsers, that allow
for the development of 3D, VR-ready applications which
are multi-platform and easy to integrate with other front-end
modules and Web APIs.

In the confluence of both lines, we built our own implemen-
tation of CODECITY as a part of a new toolset for VR data
visualization, BABIAXR. We wanted to show that something
similar to the original CODECITY can be implemented with
relative ease, but with greater accessibility (since it runs in any
recent web browser), and being able to run both on-screen or
in virtual reality (VR) devices, such as the Oculus Quest.

We also reused an existing toolset for the retrieval and
analysis of data from software development repositories to
easily build automated pipelines capable of producing the kind
of data needed by CODECITY visualizations. This allowed for
a complete decoupling of data retrieval, data analysis, and data
visualization.

Our implementation gave us a unique chance: testing to
which extent the added accidental complexity of VR, when
compared to traditional on-screen visualizations (i.e., acquiring
devices, navigating the immersive environment) is justified by
its benefits (i.e., complete immersion). We could also test if
correctness of the interpretation of the code city was similar
in both environments.

The nature of CODECITY is spatial as the VR environment.
As a consequence, we present in this paper a controlled
experiment for the comparative evaluation of two CODECITY-
based approaches: on-screen and VR immersion. The main
aim is to check if VR immersion is at least as effective and
efficient as on-screen, for the same visualization. We designed
a set of program comprehension tasks and analyzed both
the correctness of the task solutions and the task completion
time. Our experiment involved 24 participants from both
industry and academia divided into two groups, with the same
conditions in order to prove that both groups are able to
solve software comprehension and software structure tasks in
a similar time and correctness.

The main two contributions presented in this paper are:

1) The implementation of CODECITY in BABIAXR, which
can be used in any device with a modern browser,
including VR devices, making the use of this type of vi-
sualization more accessible to users. The implementation
is distributed as open source software, and is therefore
completely reusable.

2) The results of our experiment, showing that the VR
approach is viable and has benefits compared to on-
screen applications. Even when these results still have
to be validated with larger samples of users, they are a
first evidence in this direction.



II. BABIAXR-CODECITY

This section details BABIAXR-CODECITY, our tool to
make CODECITY-like visualization accessible both on-screen
and in an immersive VR environment. We also detail the
process to produce a BABIAXR-CODECITY scene starting
from the source code available in a GIT repository.

A. BABIAXR

BABIAXR-CODECITY is a part of BABIAXR,1 a toolset for
3D data visualization in the browser. BABIAXR is based on
A-FRAME,2 an open web framework to build 3D, augmented
reality (i.e., AR), and VR experiences in the browser. A-
FRAME extends HTML with new entities allowing to build
3D scenes as if they were HTML documents, using techniques
common to any front-end web developer. A-FRAME is built
on top of THREE.JS,3 which uses the WEBGL API available
in all modern browsers.

BABIAXR extends A-FRAME by providing components
to create visualizations, simplify data retrieval, and manage
data (e.g., data filtering or mapping of fields to visualization
features). Scenes built with BABIAXR can be displayed on-
screen, or in VR devices, including consumer-grade headsets.
Figure 1 shows a sample scene built with BABIAXR. BABI-
AXR is open source: Its source code is available on GITLAB4

and it can be installed with NPM.5

Fig. 1: Example of a BABIAXR Scene

B. CODECITY-like Visualizations in BABIAXR

BABIAXR provides two visualizations based on
CODECITY. In this paper we present BABIAXR-CODECITY,
which reimplements the original CODECITY but uses a
different algorithm to layout the city, and presents the 3D
visualization in a web browser (i.e., instead of being a desktop
SMALLTALK application). For the city layout, BABIAXR
employs a spiraling algorithm: the first element is placed at
the center of the spiral and the remaining elements spiral
around it.

1BABIAXR: https://babiaxr.gitlab.io
2A-FRAME: https://aframe.io
3THREE.JS: https://threejs.org
4https://gitlab.com/babiaxr/aframe-babia-components
5https://npmjs.org/package/aframe-babia-components

The algorithm is used recursively at all the levels of the
software architecture, producing a layout in districts, that are
composed of subdistricts, and so on, until the buildings are
displayed at the deepest level. Figure 2 shows a scene depicted
with BABIAXR-CODECITY.

Fig. 2: Example of a BABIAXR-CODECITY Scene

BABIAXR-CODECITY scenes are interactive. The user can
hover the cursor on a building to open a tooltip containing the
name of the file together with the values of the metrics for
the corresponding software artifact (e.g., number of functions,
lines of code, and Cyclomatic Complexity Number [9] of
a file). The tooltip disappears when the cursor leaves the
building, but pinned tooltips can be enabled by clicking on
a building. To obtain information on a district (i.e., a folder)
the user can click on it. These interactions work in the
same way on-screen (i.e., with the mouse as cursor) and in
VR (i.e., with the controller of the VR headset as cursor).
Like the original CODECITY, BABIAXR-CODECITY maps
the values of software metrics to features in the visualization.
In the current version of BABIAXR-CODECITY, each building
corresponds to a file. Its base area is proportional to the
number of functions, its height corresponds to lines of code per
function, and its color represents the Cyclomatic Complexity
value (i.e., in a blue to red scale).

C. From Source Code to a 3D Scene

BABIAXR-CODECITY can produce a scene starting from a
commit in a GIT repository (i.e., snapshot). A Python script
(i.e., COCOM GRAAL2ES.PY6) clones the repository, checks
out a given commit, computes the values of metrics for each
file, and stores them in an ELASTICSEARCH7 database. The
script uses GRAAL [10] and PERCEVAL [11] to retrieve and
compute the values of metrics. GRAAL, in turn, uses other
tools to compute metrics, via its COCOM backend8).

6COCOM GRAAL2ES.PY docs: https://gitlab.com/babiaxr/
aframe-babia-components/-/tree/master/tools/generate_
repository_data

7ELASTICSEARCH: https://www.elastic.co/
8GRAAL-COCOM backend:
https://github.com/chaoss/grimoirelab-graal#backends

https://babiaxr.gitlab.io
https://aframe.io
https://threejs.org
https://gitlab.com/babiaxr/aframe-babia-components
https://npmjs.org/package/aframe-babia-components
https://gitlab.com/babiaxr/aframe-babia-components/-/tree/master/tools/generate_repository_data
https://gitlab.com/babiaxr/aframe-babia-components/-/tree/master/tools/generate_repository_data
https://gitlab.com/babiaxr/aframe-babia-components/-/tree/master/tools/generate_repository_data
https://www.elastic.co/
https://github.com/chaoss/grimoirelab-graal#backends


Once the results of the analysis are stored in the database,
another Python script (i.e., GET LIST.PY9) queries ELASTIC-
SEARCH to produce a JSON document in the format required
by BABIAXR-CODECITY that contains all the information
needed for the visualization. It is structured as follows:

1 [
2 {
3 "file_path": "aaa/bbb/ccc"
4 "metric": x,
5 "metric2": y,
6 ...
7 },
8 ...
9 ]

The scene to visualize this data is composed of a
single HTML file, which uses the JSON document. The
HTML file imports all the dependencies (i.e., A-FRAME
and BABIAXR JavaScript packages) and defines the scene
by including the corresponding elements and compo-
nents: babia-queryjson to retrieve the JSON document,
babia-treebuilder to generate the tree-like data struc-
ture needed by BABIAXR-CODECITY, and babia-boats
which is the actual component to generate the visualization.
Each component has its own configuration, detailed in the
documentation.10 The listing below shows a sample scene,
including some configuration parameters:

1 <a-scene id="scene">
2 <a-entity id="rawdata" babia-queryjson="url: data.json"></

a-entity>
3 <a-entity id="treedata" babia-treebuilder="field: field_list;

split_by: /; from: rawdata"></a-entity>
4 <a-entity id="city" babia-boats="from: treedata; area:

metric1; height: metric2; color: metric3">
5 </a-entity>
6 ...
7 </a-scene>

Figure 3 summarizes the complete workflow to produce a
scene with BABIAXR-CODECITY starting from a source code
snapshot in a GIT repository.

III. EXPERIMENT DESIGN

To understand whether VR is well suited to present
CODECITY-like visualizations compared to the traditional on-
screen representation we conducted a controlled experiment,
described in this section. We reviewed and followed the
ACM SIGSOFT Empirical Standards [12] for designing the
experiment, specifically those relevant for the quantitative
method for experiments with humans, satisfying all essential
attributes and a part of the desirable ones.

A. Research Questions

The same implementation of BABIAXR-CODECITY can be
used both in immersive VR and on-screen. We take advantage
of this fact to conduct an experiment that compares the same
visualization (i.e., the same software system and the same
visualization elements) in both environments. Our experiment
aims at understanding how accurate (i.e., correctness) and
efficient (i.e., time spent) are participants immersed in VR

9https://gitlab.com/babiaxr/aframe-babia-components/-/
tree/master/tools/generate_from_es

10https://gitlab.com/babiaxr/aframe-babia-components/-/
tree/master/docs/APIs
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Fig. 3: BABIAXR Workflow: From Source Code to a Scene

compared to participants working on-screen when performing
the same software comprehension tasks. This experiment is
inspired by the original experiment performed by the authors
of CODECITY [13].

We formulate the following research questions:
• RQ1: How does the accuracy of participants immersed

in VR compare to that of participants using the on-screen
version of BABIAXR-CODECITY?

• RQ2: How does the efficiency of participants immersed
in VR compare to that of participants using the on-screen
version of BABIAXR-CODECITY?

B. Target System and Visualization Metrics

In our experiment, we ask participants to perform a set
of program comprehension tasks, detailed in Section III-D.
Participants are shown a visualization of JETUML,11 a
lightweight desktop application to interactively create and edit
Unified Modeling Language (UML) diagrams. Participants had
to repeat the same tasks in two different versions of JETUML:
the snapshot of March 24, 2021 (see Figure 4a) and the
snapshot of June 28, 2018 (see Figure 4b).

In both cases, we used for the snapshot the first commit
of the day in the master branch of the GIT repository. We
included two snapshots in the scene to collect feedback from
participants about related, but different, city layouts.

The metrics used in the city visualization of BABIAXR-
CODECITY (i.e., area, height, and colors of the buildings) are
customizable. For our experiment, the configuration is similar
to the original CODECITY implementation: Each building
represents a file where its base area represents the number of
functions (i.e., num_funs), its height represents the lines of
code per function (i.e., loc_per_function), and its color
represents the Cyclomatic Complexity Number (i.e., CCN, in a
blue to red scale). Therefore, its volume represents the number
of lines of code (i.e., LOC) of the file.

11JETUML: https://github.com/prmr/JetMUL

https://gitlab.com/babiaxr/aframe-babia-components/-/tree/master/tools/generate_from_es
https://gitlab.com/babiaxr/aframe-babia-components/-/tree/master/tools/generate_from_es
https://gitlab.com/babiaxr/aframe-babia-components/-/tree/master/docs/APIs
https://gitlab.com/babiaxr/aframe-babia-components/-/tree/master/docs/APIs
https://github.com/prmr/JetMUL


(a) JETUML as of March 25, 2021

(b) JETUML as of June 28, 2018 (Release 2.1)

Fig. 4: The Two Scenes Used in the Experiment

C. Participants

Our experiment involved 24 participants from both
academia and industry. We divided participants into two
groups: one group tackled the tasks on-screen (SCREEN-
BABIAXR) while the other group tackled the tasks in virtual
reality (VR-BABIAXR). All subjects were recruited and did
not have any relation with the study or the paper.

VR participants perform the experiment using an Oculus
Quest 2 headset, opening the scenes in the Oculus browser. For
the whole duration of the experiment, participants are required
to talk aloud. The experiment is followed by a supervisor, who
takes note of the answers of the participant.

On-screen participants perform the experiment in the web
browser on a computer, filling in their answers via Google
Forms. The experiment is followed by a supervisor. We
designed the form to be easy and quick to fill in, so that there
is no additional delay in answering (compared with the talk
aloud mechanism used by VR participants).

In both cases the supervisor could see the scene “with the
eyes of the participant,” and provide support if needed. For
on-screen participants, the supervisor could see the screen,
and for VR participants the headset was configured to cast the
scene to a TV screen. Figure 5 shows a participant during the
VR experiment and the screencast for the supervisor.

Demographics. Table I summarizes demographics data for
our participants that include developers, Master students, PhD
students, postdocs, software analysts, and a project manager.

Fig. 5: A Participant During the VR Experiment

TABLE I: Demographics of participants

ID Position OOP
Exp/Years

PRP
Exp/Years

FNP
Exp/Years

REV
Exp/Years

IDE
Exp/Years

Fam
JetUML

VR
Exp

V1 Postdoc Expert
10+

Advanced
10+

Advanced
10+

Beginner
<1

Advanced
7-10 No No

V2 PhD
Student

Expert
10+

Knowled.
1-3

Knowled.
1-3

Beginner
<1

Expert
10+ No No

V3 PhD
Student

Knowled.
4-6

None
<1

Beginner
1-3

Beginner
<1

Advanced
4-6 No Yes

V4 Postdoc Knowled.
10+

Knowled.
10+

Beginner
<1

Knowled.
4-6

Advanced
10+ No No

V5 PhD
Student

Knowled.
7-10

None
<1

Beginner
<1

None
<1

Knowled.
7-10 No No

V6 Developer Knowled.
4-6

Beginner
1-3

Knowled.
1-3

None
<1

Knowled.
1-3 No Yes

V7 Postdoc Expert
10+

Expert
10+

Expert
10+

Expert
7-10

Expert
10+ No Yes

V8 Master
Student

Advanced
4-6

Beginner
1-3

Knowled.
1-3

Advanced
1-3

Advanced
4-6 A little Yes

V9 PhD
Student

Beginner
1-3

None
<1

Beginner
<1

None
<1

Knowled.
7-10 No Yes

V10 PhD
Student

Knowled.
1-3

Beginner
<1

Beginner
<1

Beginner
<1

Advanced
7-10 No Yes

V11 Postdoc Knowled.
1-3

Beginner
<1

Knowled.
1-3

Beginner
<1

Knowled.
7-10 No No

V12 Master
Student

Advanced
4-6

Knowled.
1-3

Advanced
1-3

Beginner
<1 Expert4-6 No Yes

S1 Developer Advanced
4-6

Advanced
1-3

Advanced
4-6

Knowled.
<1

Advanced
7-10 No N/A

S2 Developer Advanced
4-6

Knowled.
1-3

Beginner
<1

None
<1

Advanced
1-3 No N/A

S3 PhD
Student

Advanced
4-6

Advanced
4-6

Beginner
1-3

Beginner
1-3

Advanced
4-6 No N/A

S4 Developer Knowled.
4-6

Knowled.
4-6

Knowled.
4-6

Beginner
1-3

Advanced
1-3 No N/A

S5 Developer Advanced
4-6

Knowled.
<1

Knowled.
1-3

Beginner
<1

Advanced
4-6 No N/A

S6 Developer Knowled.
4-6

None
<1

Knowled.
4-6

None
<1

Expert
7-10 No N/A

S7 Developer Advanced
4-6

Advanced
4-6

Knowled.
1-3

Beginner
<1 Expert4-6 No N/A

S8 Project
Manager

Knowled.
4-6

Knowled.
4-6

Beginner
<1

Beginner
<1

Knowled.
1-3 No N/A

S9 Developer Expert4-6 Advanced
<1

Knowled.
<1 Expert4-6 Expert4-6 No N/A

S10 Developer Advanced
7-10

Beginner
<1

Knowled.
1-3

None
<1

Expert
7-10 No N/A

S11 Developer Expert
10+

Advanced
10+

Advanced
1-3

Beginner
<1

Expert
10+ No N/A

S12 Software
Analyst

Advanced
10+

Advanced
10+

Advanced
4-6

Knowled.
10+

Advanced
10+ No N/A

Figure 6 and Figure 7 summarize experience level and years
of experience of participants in Object-Oriented Programming
(i.e., Exp OOP), Procedural Programming (i.e., Exp PRP),
Functional Programming (i.e., Exp FNP), Reverse Engineer-
ing (i.e., Exp REV), and in using an IDE (i.e., Exp IDE).

None of the participants had ever used a CODECITY-like
visualization before, even if some of them have heard of it.
Only one participant was “a little” familiar with JETUML,
meaning she had heard of the system, but never used it.

D. Tasks

Table II summarizes the 8 tasks that participants had to
address, repeating the same 4 tasks in two different versions
of JETUML: T1–T4 for the snapshot of Mar 24 2021, while
T5.1–T5.4 for the snapshot of Jun 28 2018.



TABLE II: Tasks performed in the experiment

Task ID Task Description & Purpose Category
T1 / T5.1 Description. Explore the city to locate all the test code (i.e., files and directories) of the system. Structural

Purpose. typically, test classes are defined in separated packages in Java projects. The participants needs to understand
how the test classes are organized.

Understanding

T2 / T5.2 Description. Find the three source code files (not testing files) with the highest number of functions (i.e., num_funs)
in the system.

Metric Analysis

Purpose. Classes in an Object-Oriented systems typically have a single responsibility. In this task, participants have to
locate classes with the highest number of functions (or methods), which are often good candidates for refactoring (e.g.,
split class).

T3 / T5.3 Description. Find the three source code files (not testing files) with the highest lines of code per function
(i.e., loc_per_function) in the system.

Metric Analysis

Purpose. Lines of code per function is a good indicator to identify classes with very large methods, hence good candidates
for refactoring, maintenance activities, or quality assurance.

T4 / T5.4 Description. Find the three source code files (not testing files) with the highest Cyclomatic Complexity Number
(i.e., CCN).

Metric Analysis

Purpose. The Cyclomatic Complexity Number measures the number of linearly independent paths through a piece of
code. Most of the times, complex pieces of source code are good candidates for refactoring.

T6 Description. Now that you are more familiar with JETUML, can you locate the core part of the system, i.e., the most
important files or packages? Please explain briefly why do you think that this is the core.

Tool Insight

Purpose. This task was not considered as an integral part of the experiment, but it gave us feedback on the degree to
which our visualization supports users in locating the key parts of a software system.

Fig. 6: Demographics: Experience Level

Fig. 7: Demographics: Years of Experience

To design our tasks, we leveraged the maintenance task
definition framework by Sillito et al. [14]. We collected the
data as follows:

Answers. To provide answers to questions in each task,
participants of SCREEN-BABIAXR had to fill in a Google
Form, while participants of VR-BABIAXR had to speak aloud
for the whole duration of the experiment. For each task,
participants were also asked to assess the level of difficulty
(i.e., from Strongly Disagree to Strongly Agree).

Efficiency. The supervisor tracked the time that each partic-
ipant spent on each task. As a backup mechanism, in SCREEN-
BABIAXR the supervisor also recorded a screencast of each
participant’s screen while in VR-BABIAXR the supervisor
made a video recording of the whole experiment.

Correctness. Before running the experiments, the first au-
thor created an oracle with the correct answers to each of
the tasks that was validated by the second author. When
participants had to find the Top 3 files with respect to a metric,
we checked if their answer was within the Top 5 files to cope
with hard to distinguish visual differences.

Feedback. In the final task we asked a few high-level ques-
tions (e.g., perceived difficulty, general feedback to improve
the visualization). We also asked an open-ended question:
“Can you locate the core part of the system, i.e., the most
important files or packages? Please explain briefly why you
think that this is the core.” This task, despite not being an
integral part of the experiment, gave us feedback on how our
visualization supports users in locating key parts of a system.

IV. RESULTS

In this section we show how the results from the experiment
allowed us to answer our research questions.

A. Correctness (RQ1) – How does the accuracy of partici-
pants immersed in VR compare to that of participants using
the on-screen version of BABIAXR-CODECITY?

T1 was correctly answered by all participants (i.e., both
VR-BABIAXR and SCREEN-BABIAXR), who were able to
locate the zone of the city where test code is displayed. The
same applies also to T5.1 (i.e., the same task for the other
snapshot of JETUML). This is an indication that users are at
ease easily locate a block of code (i.e., the test directory)
across different versions of a software system.

Table III summarizes results for T2−4 and T5.2−5.4. Tasks
related to Metric Analysis show some differences between
VR-BABIAXR and SCREEN-BABIAXR participants. For T2,
66.6% of VR-BABIAXR participants were able to identify the
file with the highest number of functions (i.e., the building with
the largest base area) versus 83.3% of SCREEN-BABIAXR
participants.



TABLE III: Correctness for T2−4 and T5.2−5.4 – VR vs. On-Screen

ID VR 1st file VR 2nd file VR 3rd file Screen 1st file Screen 2nd file Screen 3rd file VR Top5 Screen Top5 All Top5
T2 66.6% 75.0% 58.3% 83.3% 83.3% 83.3% 100.0% 100.0% 100.0
T3 83.6% 66.6% 58.3% 100.0% 83.3% 75.0% 83.6% 100.0% 91.6%
T4 83.6% 83.6% 83.6% 100.0% 100.0% 91.6% 100% 100.0% 100.0%
T5.2 83.3% 91.6% 50.0% 100.0% 100.0% 91.6% 91.6% 100.0% 95.8%
T5.3 75.0% 100.0% 83.6% 100.0% 75.0% 66.6% 100.0% 91.6% 95.8%
T5.4 83.6% 100.0% 66.6% 100.0% 100.0% 91.6% 91.6% 100.0% 95.8%

The second file was identified by 75% of VR-BABIAXR
participants versus 83.3% of SCREEN-BABIAXR participants.
The third file was identified by 58.3% of VR-BABIAXR
participants versus 83.3% of SCREEN-BABIAXR participants.
If we allow for a minimal margin of error, to account for the
fact that some visual differences are hard to distinguish, and
compare their answers against the Top 5 files (instead of Top
3 files), all the answers are within these bounds.

Regarding T3, the first source code file with the highest
lines of code per function (i.e., represented by the height of the
building) was correctly identified by 83.6% of VR-BABIAXR
participants vs. 100% of SCREEN-BABIAXR participants.
The second file was identified by 66.6% of VR-BABIAXR
participants vs. 83.3% of SCREEN-BABIAXR participants.
The third file was identified by 58.3% of participants in VR-
BABIAXR vs. 75% in SCREEN-BABIAXR. Allowing for the
Top 5 files margin of error, 83.3% of the answers in VR-
BABIAXR were within these bounds vs. 100% of SCREEN-
BABIAXR.

For task T4, the first two source code files with the highest
Cyclomatic Complexity Number (i.e., represented by color)
were correctly identified by 83.6% of participants in VR-
BABIAXR versus 100% in SCREEN-BABIAXR. The third
file was identified by 83.6% in VR-BABIAXR and 91.6% in
SCREEN-BABIAXR. The answers of all participants are in the
Top 5 files.

For T5 we asked participants to “go back in time” and
repeat the previous tasks on an older version of the system.
We wanted to perform the same tasks in a different version
of the same system, to check for consistency. For T5.2, the
results are as follows: VR-BABIAXR 83.3% (1st file), 91.6%
(2nd file), and 50.0% (3rd file) versus SCREEN-BABIAXR
100% (1st file), 100% (2nd file), and 91.6% (3rd file). The
answers of 95.8% of participants are included in the Top
5 files. For T5.3, the results are as follows: VR-BABIAXR
75% (1st file), 100% (2nd file), and 83.6% (3rd file) versus
SCREEN-BABIAXR 100% (1st file), 75% (2nd file), and
66.6% (3rd file). The answers of 95.8% of participants are
included in the Top 5 files. For T5.4, the results are as follows:
VR-BABIAXR 83.6% (1st file), 100% (2nd file), and 66.6%
(3rd file) versus SCREEN-BABIAXR 100% (1st file), 100%
(2nd file), and 91.6% (3rd file). The answers of 95.8% of
participants are in the Top 5 files.

All these results show that VR-BABIAXR participants have
consistently answered with lower accuracy with respect to
SCREEN-BABIAXR participants. In Section V we discuss
possible causes and implications.

Despite the different results, both VR-BABIAXR and
SCREEN-BABIAXR participants provided similar answers
with respect to the difficulty of the tasks (see Figure 8).
However, more VR-BABIAXR participants found some tasks
difficult. The main reason was a lack of familiarity with the
VR headset and its interactions.

Fig. 8: Answers to “Did You Find the Task Difficult?”

B. Completion Time (RQ2) – How does the efficiency of
participants immersed in VR compare to that of participants
using the on-screen version of BABIAXR-CODECITY?

Table IV summarizes the results to answer RQ2, which
are also presented as box plots in Figure 9. The difference
in completion time between VR-BABIAXR and SCREEN-
BABIAXR is remarkable.

TABLE IV: Average Task Completion Time & Statistical
Analysis (Mann-Whitney U Test and Cliff’s Delta effect size)

VR Screen (S) Mann-Whitney U Test Cliff’s
(m:ss) (m:ss) U p-value Delta

T1 1:47 3:57 128.0 ≈0.001 0.77
T2 1:50 3:46 129.0 ≈0.001 0.79
T3 1:42 3:00 137.0 <0.001 0.75
T4 0:57 1:38 120.0 ≈0.006 0.67
T5.1 0:16 1:00 144.0 <0.001 1.00
T5.2 1:01 1:56 138.0 <0.001 1.00
T5.3 1:05 2:11 128.5 ≈0.001 0.78
T5.4 0:28 1:12 144.0 <0.001 1.00
All 1:08 2:20 7,531.0 <0.001 0.63

Across all tasks, VR-BABIAXR participants were faster
than SCREEN-BABIAXR participants. On average, they were
1 minute and 12 seconds faster. This difference reaches its
peak in T1 where VR-BABIAXR participants were 2 minutes
and 10 seconds faster than SCREEN-BABIAXR participants to
identify the test directory. To understand whether these dif-
ference are statistically significant, we ran the Mann-Whitney
U Test [15], a non-parametric unpaired test suitable to com-
pare differences between two independent groups (i.e., VR-
BABIAXR and SCREEN-BABIAXR).



Fig. 9: Completion Times in Seconds – VR-BABIAXR vs. SCREEN-BABIAXR

Columns U and p-value in Table IV report the results:
Across all tasks, differences in task completion times between
VR-BABIAXR and SCREEN-BABIAXR are statistically sig-
nificant. To quantify the amount of difference between both
groups we also report the value of the Cliff’s Delta effect
size measure [16] for the magnitude, and the corresponding
range of Cliff’s Delta following the suggestion by Romano
et al. [17]. Our results show that across all tasks the effect
size is large (i.e., δ > 0.474). In Section V we discuss possible
causes and implications.

C. Final Task & Feedback

At the end of the experiment, we asked participants to
perform a high-level task: Locating the “core” of JetUML.
Most participants provided a reasonable answer (e.g., the
src/ca/mcgill/cs/jetuml directory). Some entered
into more details and highlighted specific subdirectories (or
files) based on different features of the visualization (e.g.,
high density of buildings, bigger classes, more complex files).
Finally, we asked participants to provide us feedback on
the experiment. All agreed that the experiment was not too
difficult, a few reported trouble moving in the 3D scene.

V. DISCUSSION

The results of our experiment show that VR-BABIAXR
participants have lower accuracy with respect to SCREEN-

BABIAXR participants (except for T5.3). The difference is
not high, but is also clear. There are a number of reasons
that might explain this. To begin with, half of the VR-
BABIAXR participants had never used a VR headset prior to
our experiment. Using a VR headset is an experience which
at the beginning can be quite disorienting.

Indeed, if we observe how the tasks were solved throughout
the experiment in terms of efficiency and correctness, VR-
BABIAXR participants seem to get better task after task. This
suggests that if users are more accustomed to the use of VR
headsets, the difference in accuracy could be narrowed if not
completely nullified. However, more research is needed to
understand whether this is really the case and we don’t have
enough evidence to confirm it.

When we focus on completion time, the picture is com-
pletely different: Despite lacking experience in VR headset
usage, VR-BABIAXR participants were considerably faster
than SCREEN-BABIAXR participants across all tasks. As
discussed in Section IV, the difference across all tasks is
statistically significant (according to the Mann-Whitney U non-
parametric unpaired test) and with a large Cliff’s Delta effect
size measure. In some of the tasks, VR-BABIAXR participants
took less than half the time of SCREEN-BABIAXR.

This result suggests that VR immersion could play a pivotal
role when carrying out tasks in a 3D environment: Interacting



with a VR headset is similar to interacting in the real world,
and you use more natural gestures than when working on-
screen: you move your head to look around, you kneel down
to see the world from a lower perspective, etc. Besides, not
everybody is used to navigate 3D environments on-screen (i.e.,
with WASD keys and a mouse). In this environment interactions
are less natural and, as suggested by our results, less effective.

To better understand these results, it is important to no-
tice that, despite our best efforts and intentions, BABIAXR-
CODECITY is still a prototype and it is not optimized for VR.
We see a lot of room for improvement when it comes to a
number of concerns that pertain exclusively to VR:

• Navigation. Currently the navigation is based on gaze
(i.e., to select the orientation of the camera) and single-
hand controller (i.e., to gather additional information on
entities). Many VR applications, especially games, use
both hand controllers in conjunction with gaze, allowing
for more natural and complex movement options. Also,
there are different types of Artificial VR Locomotion12

that we did not explore. This means there is still untapped
potential in making the VR-BABIAXR environment more
convenient and efficient in terms of navigation.

• Physical Size. In a classical first-person 3D on-screen
visualization, there is a tacit assumption that the viewer,
while navigating within the 3D environment, has no
“physical” size, but is a mere point of view in the envi-
ronment. In VR this is quite different. As in reality, there
is the question of scale: “How big” is the user within the
environment? If we look at Figure 4a, the user is standing
in a room looking at the city visualization which sits atop
a slab. From this we can infer that, if the visualization
was physical, it would be as big as a large dining table.
However, the city could be represented even smaller, or as
a real-scale city. Which representation is more convenient
and efficient? Would allowing users to change scale at
will help them to be more comfortable and efficient?
More research is needed to answer these questions, but
we think both convenience and performance could be
improved tuning this factor appropriately.

In summary, we consider that the results of our experiment
show that CODECITY in VR is comparable to CODECITY
on-screen, with respect to the accuracy of results, and much
better with respect to efficiency. Considering that VR headsets
are still a rather novel technology, and that our immersive VR
version of the experiment is still under-explored, we believe
our study paves the way for a number of follow-up studies
and implementations.

We also have shown how our multi-platform implementation
of CODECITY, that can work very similarly both on-screen
and in VR, can help to fairly compare those environments for
metaphors used for software comprehension.

12Artificial VR Locomotion:
https://developer.oculus.com/learn/artificial-locomotion

VI. THREATS TO VALIDITY

A. Internal validity

Internal validity is related to uncontrolled factors that can
influence the effectiveness. In our case it pertains to:

• Subjects. We ensured that all the participants had ex-
perience in different relevant topics about programming
using a questionnaire, reducing the threat that they were
not competent enough. Moreover, we asked for their
experience in the relevant topics to mitigate the threat
that the participant’s experience was not distributed fairly.
However, their training for the environment of their
experiment (i.e., on-screen or VR) was not uniform,
with persons participating in the VR experiment being
much less experienced in VR environments than on-
screen participants in on-screen environments.

• Tasks. The choice of tasks may have been biased in favor
of VR-BABIAXR or SCREEN-BABIAXR. We mitigated
this threat by developing scenes that were valid for both
VR and on-screen, with exactly the same tasks, so that
the level of difficulty was as similar as possible. We also
included tasks that put both modes at a disadvantage:
Tasks focused on precision could be easier on-screen,
while tasks focused on locality could be easier in VR. Not
controlled aspects (e.g., the relative size of the buildings
in VR) could have an influence on the results.

• Training. In both environments (i.e., VR-BABIAXR and
SCREEN-BABIAXR) the text to be followed for per-
forming the tasks explains how the tool is used and
how the interaction with the elements works. No partic-
ipant had relevant previous experience with BABIAXR
or CODECITY. It remains to be investigated whether a
practical tutorial on how to interact with a VR headset
could reduce the experience gap between VR and on-
screen, improving the correctness of VR participants.

B. External validity

External validity relates to the generalizability of the results
of the experiment. In our case it pertains to:

• Sample Size. The number of participants in the experi-
ment is relatively small. although we have tried to select
a representative sample, a larger sample would be needed
to have more conclusive results.

• Subjects. We mitigate the threat of subject representa-
tiveness by categorizing them, including the job position
and the years of experience in the programming topics,
obtaining a balanced mix of academics and professionals.

• Target System. Another threat is represented by the
choice of the target system: JETUML. Participants did
not know it in advance, except for one who knew it “a
little.” We cannot assess how appropriate or represen-
tative JETUML is for the reverse engineering tasks we
designed, but the consistent variations in solutions for the
same task in both VR and on-screen environments signal
that results could be extensible to other systems.

https://developer.oculus.com/learn/artificial-locomotion


• Experimenter Effect. One of the experimenters is one
of the authors of BABIAXR-CODECITY, which may
have influenced any subjective aspect of the experiment.
For example, task solutions may not have been graded
correctly. To mitigate this threat, another author carried
out part of the experiments as a supervisor. Both experi-
menters built a model of the responses based on previous
experiments in the literature (e.g., [13], [18]). Even if we
tried to mitigate this threat extensively, we cannot exclude
all possible influences on the results of the experiment.

• Time Measurement. To mitigate the threat that task com-
pletion times are not exact, in each experiment run, the
supervisor was present and noted how long the participant
took to complete the task. The participant also notified the
supervisor when she had completed each task, thus having
a double-check of the completion time. In addition,
the writing time of the SCREEN-BABIAXR participants
responses in the external form is not significant, so it does
not pose an additional threat. Mitigating these threats, the
difference of answering using a form for the SCREEN-
BABIAXR participants and the aloud method for the VR-
BABIAXR participants does not produce a threat. We
planned to use in-scene mechanisms for answering the
tasks in VR-BABIAXR and on-screen forms in SCREEN-
BABIAXR, we failed to produce those for VR-BABIAXR
on time, so we revered to talk aloud in VR-BABIAXR
participants.

VII. RELATED WORK

A metaphor is a stable and systematic relationship between
two conceptual domains, according to the theory developed by
Lakoff and Johnson in the cognitive linguistics field [19]. The
metaphor used depends directly on the software artifacts to
represent [20], and has to be expressive enough to provide
mapping for their relevant features. Metaphors have long
populated the software visualization field, and the availability
of 3D improved the development of more realistic and easier to
grasp visual metaphors. Some examples of early 3D oriented
metaphors are the landscape metaphor [21] for visualizing the
structure of large systems, and the solar system metaphor [22]
for visualization of object-oriented software systems. Several
years later, CODETREES for visualizing software as a collec-
tion of trees [23], a concept which was later extended [24].

Our work is a part of the research line based on the “city
metaphor,” related to civil architecture, influencing software
representation. This line can be traced back to the design
patterns by Gamma et al. [25], rooted in the architectural
pattern language proposed by Alexander et al. [26].

A. CODECITY

The first implementation of the city metaphor was SOFT-
WARE WORLD [1], which already visualized software systems
as buildings in a city. After it, several approaches were ex-
plored to support developers on maintaining software systems
as fulfilling program comprehension tasks. In 2003 Panas
et al. [27]–[29] presented a software city showing information

about static and dynamic data, and Marcus et al. [30] a
city-like software visualization. VERSO [31] was based on
landscapes, but with a influence of the city metaphor.

In 2007 CODECITY was presented [6], raising the approach
to a new level implementation-wise. Figure 10 shows the
original CODECITY application, including the interface for
interacting with the city and the metrics details.

Fig. 10: The Original CODECITY Tool

CODECITY showed that it could not only be used for
program comprehension [6], but also for software evolution
analysis [32] and design problem analysis [33].

It sparked a flood of tools and approaches building on the
same metaphor, leading to slightly different visualizations,
showing the power and flexibility of the metaphor.

Scarsbrook et al. [34] presented a tool for visualizing
and debugging large-scale JavaScript program structure with
treemaps, Brito et al. [3] presented a similar approach focusing
on the Go programming language. Steinbrückner et al. [35]
proposed a different layout for the city, based on streets and
sub-streets for the tree structure, allowing to observe the time
evolution of the software system. Gamification has also been
used in combination with the city metaphor to perform soft-
ware comprehension tasks in CODEMETROPOLIS [36], based
on the Minecraft game engine. M3TRICITY [37], a recent re-
implementation of CODECITY by the original research group,
is web application to visualize software systems as evolving
cities that treats evolution as a first-class concept.

B. From 3D to Virtual Reality

One of the early explorations of using virtual reality for
visualizing software was done by Young and Munro [38],
at the time quite a technical feat. Another early VR-based
approach is IMSOVISION [39], which focuses on C++, defining
some metrics that nowadays are still used in the literature.
More recently, thanks to technological advances, software
visualizations based in VR become an active field of research.

Fittkau et al. proposed a VR implementation of EX-
PLORVIZ [40], based on the first versions of WEBVR, fo-
cusing on the runtime and static characteristics of object-
oriented programming software systems. Vincur et al. [4],
[41] proposed a VR city for analyzing object-oriented soft-
ware. Steinbrückner and Lewerentz [5] proposes stable city



layouts for evolving software systems, using layouts other
than treemaps. GETAVIZ [42] also uses the city metaphor
to generate structural, behavioral, and evolutionary views of
software systems for empirical evaluation.

CITYVR [43], developed with UNITY3D, provides the
same metrics as the original CODECITY, adding interactions
using gaze of the user in the VR headset, and its controllers.
The technique we used of moving in the scene technique has
similarities with their approach.

Capece et al. [44] proposed an approach to visualize Java
systems with the UNREAL ENGINE 4 using the city metaphor
in VR.

Other metaphors have been implemented in VR. Misiak,
Schreiber et al. [45] proposed the island metaphor for visual-
izing OSGi-based software systems, introducing and empha-
sizing the visualization of dependencies. Schreiber et al. [46]
presented an interactive tool that also visualizes OSGi-based
systems with their components, packages, services, and de-
pendencies in 3D, using a different metaphor including boxes.

C. Validation Experiments

Wettel et al. [13] proposed one of the first experiments
to validate the city metaphor as a way to comprehend some
aspects of software systems. Our experiment is designed in a
great deal after it. More recently, Romano et al. [18] conducted
a controlled experiment where they asked the participants to
perform program comprehension tasks with the support of the
ECLIPSE Integrated Development Environment (i.e., IDE) with
a plugin for gathering code metrics and identifying bad smells
and a visualization tool of the city metaphor displayed on a
standard computer screen and in an immersive virtual reality.
Our results are partially in line with those shown in [18],
having as similarities that the VR-BABIAXR participants are
faster than the SCREEN-BABIAXR participants and that the
correctness does not worsen significantly.

VIII. CONCLUSIONS AND FUTURE WORK

We presented a controlled experiment aimed at evaluating
whether VR is well suited to visualize CODECITY visual-
izations compared to the traditional on-screen implementa-
tions. The experiment presented the same CODECITY-like
visualization of a software system in VR and on-screen
using BABIAXR-CODECITY, part of the BABIAXR toolset
for 3D data visualization that we developed. Subjects from
both academia and industry, with a wide range of experience,
performed 8 tasks related to software comprehension in one
of the two environments, VR or on-screen.

Our results show that immersion in VR led to much shorter
completion time for the tasks, compared to on-screen. On
the downside, subjects in VR performed with less accuracy
with respect to on-screen participants. However, for most
of the tasks if we extend the bounds to the Top 5 closer
results, correctness is always over 90%, so we can affirm
that the VR version is valid for solving those tasks. We
believe their higher error rate was related to their lack of
experience with virtual reality devices, the still prototypical

stage of our implementation, and the visual similarity of
the buildings in some of the proposed tasks. The feedback
collected from participants is consistent with our appreciation.
Taking everything into account, the experiment shows that VR
provides a better user experience than on-screen for issues
related to locating, moving, and searching for elements in the
scene. This explains the fact that time to complete is about
half in most tasks performed in VR.

Considering these results, it could happen that VR might
let CODECITY-style visualizations reach the “tipping point,”
beyond which they are viable and useful for practitioners.

Virtual reality does not only provide better performance
in terms of speed, and some reasonable but still improvable
performance in terms of accuracy. It also offers a set of
unprecedented features, such as the chances of collaboration
between teams of people immersed in the same VR envi-
ronment, which we find very promising and it deserves to
be explored. The improvement of accuracy in VR, and the
exploration of these new possibilities, are interesting lines of
long-term future work.

With respect to short-term future work, we would like to
validate our results by performing similar experiments with
larger samples of participants. In addition, the feedback of
participants, and some more usability experiments, could be
leveraged to improve VR BABIAXR-CODECITY scenes and
their user experience, so they become more user friendly.
For that, we plan to improve the interaction, experiment with
different Artificial VR Locomotion techniques, add an overlay
grid to help in appreciating dimensions, use predesigned
camera positions to have different types of views, and have
a better access to metrics, etc.

Replication package: The data obtained for our experiment,
and the materials needed to reproduce the experiment are
available in the Replication Package.13
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