
Voronoi Evolving Treemaps
Davide Paolo Tua, Roberto Minelli, Michele Lanza

CodeLounge @ Software Institute — USI, Lugano, Switzerland

Abstract—Since their invention, treemaps have been widely
used to visualize hierarchical structures, due to their intuitive
nature and their scaling capability: Indeed, given a maximum
treemap size, one can depict hierarchical structures, such as
file and software systems, of arbitrary size and depth. To make
up for the rather blocky nature of treemaps, Voronoi treemaps
were introduced, leading to depictions that look more “organic”.
However, hierarchical structures in general, evolve over time, and
this is especially the case for software.

We present Voronoi Evolving Treemaps (VET), a novel ap-
proach inspired by the Voronoi power-weighted treemap al-
gorithm, that takes into account the evolution of hierarchical
structures. VET is able to display the complete evolution of
a software system in terms of its hierarchical structure, and
enriches the visualization with additional information. We detail
VET’s evolutionary layout algorithm, discuss the architecture,
implementation, and the features of VET, and illustrate how
VET can be used to analyze the evolution of different systems.

Index Terms—software visualization, software evolution,
treemap, layout, voronoi, power-weight

I. INTRODUCTION

Hierarchical structures, commonly termed trees, are preva-
lent in software systems. They manifest themselves at the
filesystem level (i.e., directories which contain directories and
files) and also at a programming language level (i.e., packages
contain classes which contain methods). Over the years two
main ways have emerged to visualize such structures. The
first one is the traditional graph approach where entities are
nodes and containment is represented as edges. The other
approach are treemaps, which have the advantage of being able
to represent hierarchies of arbitrary size in a predefined space.
However, the orthogonal nature of traditional treemap layouts
often produces thin and stretched out rectangles and com-
plicates the identification of boundaries between and within
different hierarchy levels. Researchers tried to overcome these
limitations in several ways, for example, by generating layouts
where the shape of nodes is approximated to squares, as
in “Squarified Treemaps” [1]. The latest development of
treemaps, called “Voronoi treemaps,” use arbitrary polygons,
instead of rectangles, to depict nodes and encode information
on the nesting level in in border thickness between elements
[2]. Figure 1 exemplifies how Voronoi treemaps can be used
to visualize hierarchical information.

Although these approaches have improved the way hier-
archical information is represented, they all share a major
limitation when it comes to visualizing software systems: they
do not deal with evolution. Software constantly evolves to
adapt to changing requirement [3], thus software visualization
approaches should consider evolution as first class concept.

Fig. 1: A Voronoi Treemap of a Snapshot of a Software System

We introduce VET, an approach to “Visualize Evolv-
ing Treemaps” implemented in a publicly available web-
application.1 The layout of VET is based on Voronoi Power-
Weighted Diagrams [4], [5] with a non-euclidean distance
function. Each region of the treemap is proportional to an
additive hierarchical metric of choice, i.e., metrics for which
the weight for a given node can be calculated as the sum
of all its childrens’ weights. If we use VET to visualize a
software system, we can for example use Lines of Code (i.e.,
LOC), code churn [6], or code complexity as weight metrics.
Differently from most existing approaches, VET considers
evolution as a first class concept. For each step Si in the
evolution of a system (e.g., commits, time intervals, commit
samples) VET generates a visualization. This visualization,
will be used as starting point to generate the view for the
next step Si+1. This enables VET to maintain a consistent
layout across versions. VET provides ready-made projects to
visualize and enables users to analyze new Git repositories.

Structure of the Paper: Section II discusses Voronoi dia-
grams. Section III details our approach and Section IV exem-
plifies how to analyze software systems with VET. Section V
summarizes the related work. Section VI concludes the paper.

1See https://vet.si.usi.ch/

https://vet.si.usi.ch/


II. BACKGROUND: VORONOI DIAGRAMS

A Voronoi diagram [7] is “a partitioning of a plane with
n points (also called seeds, sites, or generators) into convex
polygons (or regions) such that each polygon contains exactly
one point and every point in a given polygon is closer to its
generating point than to any other” [8].

To define how “every point in a polygon is closer to its
site than to any other” different distance functions can be
employed. If the distance is euclidean, the resulting diagram
will be composed of convex polygons, with the sites contained
by their respective regions. If we add the constraint that the
area of each Voronoi cell should be proportional to a specified
value (e.g., the value of a metric), we must use a distance
function based on the “weight” of the site i.

The most used distance functions are:
1) Additive Weighted Distance where the weight is sub-

tracted from the distance (Da = D(p, pi)− Fwi);
2) Multiplicative Weighted Distance where the distance is

divided by the weight coefficient (Dm = D(p, pi)/Fwi);
3) Power-Weighted Distance where the weight is subtracted

from the square of the distance (Dp = D(p, pi)
2 − Fwi).

Figure 2 shows the resulting Voronoi diagrams using (a) ad-
ditive and (b) multiplicative weighted distance functions.

(a) (b)

Fig. 2: Voronoi Diagrams Using Different Distance Functions

The values of the metric (i.e., wi) and the respective weights
in the diagram (i.e., Fwi) are two different values, related as
follows: Fwi = fi(wi), where fi is an unknown monotoni-
cally increasing function, different for each site i, that grows
in a non-linear, non-predictable way. The problem of using
such functions is that they often result in semantically wrong
diagrams (e.g., sites with no regions, regions disconnected
from the site, non-straight region boundaries), like Figure 2a.
Moreover, the initial position of sites often results in diagrams
that are not appealing to the eye (e.g., polygons with very
high width to height ratio). For the first problem, the use of
a power-weighted distance function mitigates at least some of
these limitations by ensuring that all region boundaries are
straight. To contrast the second problem and improve the look
and feel of the diagrams, the computation is often followed
by the execution of Lloyd’s algorithm, also known as Voronoi
relaxation [9], or by an analogous step resulting in a CVT
(Centroidal Voronoi Tessellation).

III. VET: VISUALIZING EVOLVING TREEMAPS

A. Architecture

VET is a traditional web application composed of a backend
and a frontend communicating through the WebSockets.2

Figure 3 depicts the overall architecture of VET.

Fig. 3: The Architecture of VET

The backend, written in Crystal,3 is responsible for:
(1) cloning the repositories (2) extracting the values of the
metrics for every commit (3) performing the calculations
to generate one Voronoi Power-Weighted treemap for each
commit, and (4) sending the data to the frontend.

The frontend, written in React, Typescript, and three.js, lets
users specify the repository to analyze and to configure the
parameters of the visualization.

B. The Evolutionary Algorithm

The underlying algorithm of VET has two main responsi-
bilities: (1) extracting the values of hierarchical metrics across
all revisions of the project, and (2) creating the Voronoi
Power-Weighted treemap.

Extracting Hierarchical Metrics. Our algorithm clones the
Git repository then sequentially scans all non-merge commits
that were performed on the repository. For each commit, the
algorithm extracts the value of the chosen hierarchic metric
(e.g., LOC) for each of the files in the repository. As a result,
for each revision of the project we obtain a metrics tree. The
whole process generates a list (L) of metrics tree.

Creating the Voronoi Power-weighted Treemap. For each
node n in each metrics tree e of L, our algorithm computes a
Voronoi Cell Result Ve,n composed of (1) node name (2) site
(3) Voronoi weight (fwi), and (4) polygon.

Algorithm 1: Evolving Treemap Generation
Input: list L of all metrics data, enclosing Polygon E
Output: list V TL of the resulting Voronoi treemaps
foreach element e in L do

N ←nodes in e ;
if e is not the first element then

foreach node n in N do
V TLi,n ← (V TLi−1,n) if exists V TLi−1,n;

end
end
V TLe ←MultiLayerV oronoi(N, rootNode, E)

end

2See https://developer.mozilla.org/en-US/docs/Web/API/
WebSockets_API

3See https://crystal-lang.org/

https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API
https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API
https://crystal-lang.org/


1

2

3

4

5

6

7

Fig. 4: The User Interface of VET

Algorithm 1 summarizes the iterative algorithm to build the
whole list of Voronoi Cell Result.

Algorithm 2 recursively computes the single Voronoi
treemap for any snapshot of the project.

Algorithm 2: MultiLayer Voronoi
Input: list N of nodes, starting node r, enclosingPolygon E
Output: list of outstructures V L
C ←childrenOf r;
if C not empty then

V LC leftarrowSingleLayerV oronoi(C,E) foreach child c in
C do

MultiLayerV oronoi(N, c, V.polygon)
end

end

Algorithm 3 computes a single Voronoi Power-Diagram.

Algorithm 3: SingleLayer Voronoi
Input: list N of nodes, enclosingPolygon E
Output: V for each e in N
DAi ← Ni.weight/Ni.parent.weight foreach ) do (Initialization of

new nodes
node n in N

end
if n does not have a pre-filled V structure then

Vn := (site: random point inside E,fwi: random float, polygon: nil)
end
while stoppingConditionsNotMet do

PN ← V oronoiPowerDiagram(VN .sites, Vn.weights)
foreach Pi in PN do

Pin ← intersection(E,Pi);
Ai ← Area(Pin/Area(E));
if DAi < Ai then

fwi = Vi.fwi + ErrorFunction(DAi, Ai)
else

fwi = Vi.fwi− ErrorFunction(DAi, Ai)
end
Vi = (centroid(Pin), fwi, Pin)

end
computeOverallAccuracy

end

This algorithm is inspired by Aurenhammer [4] and Nocaj
[5]. It computes the Voronoi power-diagram for a set of
(site, weight) tuples by computing the corresponding convex
hull and re-projecting it onto the plane, returning for each site
i the corresponding polygon Pi. To ensure that the algorithm
terminates, similar to the work of Nocaj, we implemented two
types of stopping conditions: (1) accuracy (i.e., average error
is less than 5%) and (2) maximum number of iterations.

C. User Interfaces and Features

The GUI of VET is depicted in Figure 4, subdivided into:
1) Main Area: Shows the Voronoi Treemap representation

of the code base at a given point in time. Hovering on a node
provides information on its path, metric value compared to its
parent chain and a link to that instant’s repository file.

2) Metadata Popup: Provides information about the spe-
cific instant that is currently visualized. It shows for the
currently visualized commit its hash, timestamp, the message,
number of leaves and the overall metric weight.

3) Search by name: By providing a string, it highlights all
the nodes whose name matches the string.

4) Visualization options: Three operations are provided
to Autoadvance/Timelapse, show node labels, and select the
maximum hierarchy node level to be displayed.

5) Delta Mode: A particular way of looking at the analysis
provided by VET is not by considering the metric itself, but
how the metric changes between epochs. We implemented a
dedicated view called Delta Mode. It shows, using different
colors, which nodes had a change in metric in the last N
epochs, using progressive transparency (See Figure 5).

6) Top N nodes: This menu allows to look for the N nodes
at a desired level that have the largest area (i.e., the highest
metric value). Hovering on any of those highlights them into
the main area, to father their location.



Fig. 5: An Example of Using the Delta Mode

7) Epoch selector: Provides a way to move across instants.

D. Workflow

Given a repository, the UI provides some options to generate
the Voronoi Treemaps.

Fig. 6: The Settings of VET Used to Produce Figure 8

In particular, it provides (see Figure 6)
• a way to specify the size of the overall enclosing polygon;
• an option to set the previous size to be dependent of the

overall weights (e.g., a treemap with root weight equal to
2 is twice as big as one with root weight equal to 1);

• an option to choose the desired metric;
• a way to select (or reject) particular elements or subtrees

of the repository;
• Options to sample the single commits by taking only the

last N , by taking 1 every n commit or grouping them by
day, week, or month.

When the backend completes its computation, it sends the
result to the frontend which will show it like in Figure 4.

IV. WORKING EXAMPLES

We show the evolution of some GitHub projects, summa-
rized in Table I.

TABLE I: Analyzed Projects in a Nutshell

Project Name JetUML Lucky Lua
Creation Date (mm.dd.yyyy) 01.07.2015 01.06.2017 07.28.1993
No. Commits 2,044 1,018 5,381
No. Files (on Jun 18, 2021) 417 295 110
No. Contributors 19 76 4

A. JetUml

JetUML4 is a desktop tool to design UML diagrams. For
the repository analysis, we focused on two subfolders: src
(i.e., yellow in Figure 7) and test (i.e., green in Figure 7).
It can be seen how much the repository grew in size as the
number of commits increased, and the increasing relevance of
tests. However, in the third snapshot of Figure 7, the developer
added a new package (i.e., org.json highlighted in red),
without creating the corresponding test folder.

B. Lucky

Lucky5 is a web framework written in Crystal, with a very
active community. This is highlighted by the growth of the
codebase along time, as shown in Figure 8. We can also see
that the balance between tests (‘spec‘, in yellow) and source
code (‘src‘, in beige) remains constant over time.

C. LUA

Lua6 is a programming language, especially used for mods
or in embedding contexts. The repository has a different struc-
ture than the previous ones, with a very flat, unnested structure.
As a result, the Voronoi Treemap has a more “harlequinesque”
look (see Figure 9). Still, by using delta mode, it is easy to
see what changed between any commit.

V. RELATED WORK

Shneiderman [10] introduced the concept of treemaps to
visualize the filled space on his hard disk. To prevent some of
the visual artifacts from Shneiderman algorithm, Bruls et al.
[1] proposed the squarified treemap approach.

Balzer et al. moved away from the traditional rectangle-
based visualization and proposed using Voronoi diagrams
instead [2], [11]. Nocaj et al. [5] proposed a new way of
computing a Voronoi Treemap, abandoning the sample-based
algorithm in favor of a resolution independent approach based
on the work of Aurenhammer [4].

Differently from the aforementioned approaches, VET con-
siders evolution a first class concept as, in most cases, the
visualization of a metric is as important as the visualization
of the trend of said metric over time.

4See https://github.com/prmr/JetUML
5See https://luckyframework.org/
6See http://www.lua.org/

https://github.com/prmr/JetUML
https://luckyframework.org/
http://www.lua.org/


October 24 2015
Commit: d11d15c

November 22 2017
Commit: 988cdef

July 8 2019
Commit: 6a0d97e

September 18 2019
Commit: b382cd5

September 8 2020
Commit: a4f3144

Fig. 7: Visualizing the Evolution of JetUML with VET

November 7 2017
Commit: 44819e6

May 26 2018
Commit: aa1cb70

April 15 2019
Commit: 2e8781c

March 23 2020
Commit: 097de0e

May 30 2021
Commit: bea9b8e

Fig. 8: Visualizing the Evolution of Lucky with VET

Baseline – April 7 2021
Commit: 47cffdc

April 10 2021
Commit: d205f3a

April 12 2021
Commit: 5148954

April 16 2021
Commit: 6812971

April 24 2021
Commit: fc6c74f

Fig. 9: Visualizing Last 4 Commits of Lua with the Delta Mode of VET (Baseline Commit Hash: 47cffdc)

VI. CONCLUSIONS

We have presented an approach and its implementation in
the form of a web-based tool called VET, to display evolving
Voronoi treemaps. VET treats change as a first class entity, and
thus is able to depict how systems evolve over time. VET is an
online tool specialized on creating animated Voronoi treemaps.
Figures like the ones used in this paper do a poor job at
highlighting VET’s strength. We recommend to the interested
to try out VET, located at https://vet.si.usi.ch/.

Acknowledgements: We thank the Swiss National Science
foundation for the support through the NRP-75 and NRP-77
projects 167173 and 187353.

REFERENCES

[1] M. Bruls, K. Huizing, and J. J. Van Wijk, “Squarified Treemaps,” in
Data visualization 2000. Springer, 2000, pp. 33–42.

[2] M. Balzer, O. Deussen, and C. Lewerentz, “Voronoi Treemaps for the
Visualization of Software Metrics,” in Proceedings of the 2005 ACM
symposium on Software visualization, 2005, pp. 165–172.

[3] F. P. Brooks, “The Mythical Man-Month,” Datamation, vol. 20, no. 12,
pp. 44–52, 1974.

[4] F. Aurenhammer, “Power Diagrams: Properties, Algorithms and
Applications,” SIAM J. Comput., vol. 16, no. 1, pp. 78–96, 1987.
[Online]. Available: https://doi.org/10.1137/0216006

[5] A. Nocaj and U. Brandes, “Computing Voronoi Treemaps: Faster,
Simpler, and Resolution-independent,” Comput. Graph. Forum, vol. 31,
no. 3, pp. 855–864, 2012. [Online]. Available: https://doi.org/10.1111/
j.1467-8659.2012.03078.x

[6] Munson, John C and Elbaum, Sebastian G, “Code churn: A measure
for estimating the impact of code change,” in Proceedings. International
Conference on Software Maintenance (Cat. No. 98CB36272). IEEE,
1998, pp. 24–31.

[7] G. Voronoı̈, “Nouvelles applications des paramètres continus à la théorie
des formes quadratiques. premier mémoire. sur quelques propriétés
des formes quadratiques positives parfaites.” Journal für die reine und
angewandte Mathematik, vol. 133, pp. 97–178, 1908.

[8] E. W. Weisstein. Voronoi Diagram. From MathWorld–A Wolfram
Web Resource. [Online]. Available: https://mathworld.wolfram.com/
VoronoiDiagram.html

[9] S. Lloyd, “Least Squares Quantization in PCM,” IEEE Transactions on
Information Theory, vol. 28, no. 2, pp. 129–137, 1982.

[10] B. Shneiderman, “Tree visualization with tree-maps: 2-d space-filling
approach,” ACM Trans. Graph., vol. 11, no. 1, pp. 92–99, 1992.
[Online]. Available: https://doi.org/10.1145/102377.115768

[11] M. Balzer and O. Deussen, “Voronoi treemaps,” in IEEE 2005 Sympo-
sium on Information Visualization. IEEE CS Press, 2005, pp. 49–56.

https://vet.si.usi.ch/
https://doi.org/10.1137/0216006
https://doi.org/10.1111/j.1467-8659.2012.03078.x
https://doi.org/10.1111/j.1467-8659.2012.03078.x
https://mathworld.wolfram.com/VoronoiDiagram.html
https://mathworld.wolfram.com/VoronoiDiagram.html
https://doi.org/10.1145/102377.115768

	Introduction
	Background: Voronoi Diagrams
	VET: Visualizing Evolving Treemaps
	Architecture
	The Evolutionary Algorithm
	User Interfaces and Features
	Main Area
	Metadata Popup
	Search by name
	Visualization options
	Delta Mode
	Top N nodes
	Epoch selector

	Workflow

	Working Examples
	JetUml
	Lucky
	LUA

	Related Work
	Conclusions
	References

