Universita Software

della Institute

Svizzera

italiana
SENSORIAL
SOFTWARE EVOLUTION
COMPREHENSION

Gianlorenzo Occhipinti

July 2022

Supervised by
Prof. Dr. Michele Lanza

Co-Supervised by
Dr. Csaba Nagy

Dr. Roberto Minelli

iii

Abstract

The comprehension of software evolution is essential for the understandability and maintainability of sys-
tems. However, the sheer quantity and complexity of the information generated during systems develop-
ment make the comprehension process challenging.

We present an approach based on the concept of synesthesia (the production of a sense impression
relating to one sense by stimulation of another sense), which represents the evolutionary process through
an interactive visual depiction of the evolving software artifacts complemented by an auditive portrayal
of the evolution. The approach is exemplified in SYN, a web application that enables sensorial software
evolution comprehension. We applied SYN on real-life systems and present several insights and reflections.

Dedicated to my past, present, and future
supporters. ..

vii

Acknowledgements

One year ago, when I decided to enroll as a double degree student at USI, I could have never imagined
how that could change my life. First of all, I would like to thank my advisor Prof. Dr. Michele Lanza. I feel
fortunate to have been your student. You opened up my eyes, giving me the chance to see the world from
a different perspective. I was fascinated by your senior experience and by your philosophical thoughts.

This endeavor would not have been possible without the support of my two co-advisors, Dr. Csaba
Nagy and Dr. Roberto Minelli. Thank you for all the time that you dedicated to me. It was essential for the
success of this work.

Words cannot express my gratitude to my family and my parents, Emanuele and Vera. I have been far
away from home for five years, but I always felt your unconditional love and care from you. Without your
support, I would never be able to come this far.

I am incredibly grateful to my love Biancamaria and her wonderful family. Your warmth made me feel
part of the family from the very first moment. I will never forget all the things that you've done for me.

Thanks should also go to Andrea. Together, we strengthened ourselves through our stunning university
path. I owe special thanks to many people who contributed to this work by making my life much better.
Thank you, Daniel, Ottavio, Federico, and Carmen, for all the cool stuff we did together, which was always
the cause of fun, joy, and enthusiasm.

To my Sicilian friends Francesco, Alessio, Marco, Angelo, Daniele, Davide, and many others who are
too numerous to mention: in different ways and times, you all have played an essential role in my life.

Thanks should also go to my friends Emanuele, Davide, and Samuele. I have been playing and working
with you since I was 15, when we started our Minecraft community. Thanks to you, my passion took shape
and became my job in life.

Lastly, I would like to thank myself for the determination and commitment I have always put into
projects I have worked on. As my grandmother said, I was a rough diamond, but now it is time to shine.

Contents

Abstract

Acknowledgements

1 Introduction

1.1 ContribUutions o o e e e
1.2 Document STructure v i e e e e e e e e
2 State of the Art
2.1 Software Visualization e
2.2 Software Evolution Analysis L
2.3 Program Auralization L
24 ConcluSion o o e e e e
3 Approach
3.1 Evolution Model e
3.1.1 Historical information retrieval e
3.1.2 Partial historical representation o oo o L
3.1.3 Evolutionarymetrics L
3.2 Visualization e e e e
321 2DRepresentation L e
322 3DRepresentation e
3.3 Evolution Auralization e
4 Implementation
4.1 Platform OVervIeW o v o e e e e e e e e
A2 COTe . . o v o e e
421 Project e
422 History e
423 Analysis
424 VIEW . . o o e e e e e e e
4.3 CLI . . e
44 Analyzer e
A5 Servero e e
46 Visuallnspector
4.6.1 Projectsetup e
4.6.2 Projectvisualization L L L

4.7

AUdio e e e

ix

X

5 Case studies

5.1 JetUML — Evolution Overview et e e e
52 JetUML-The Beginnings
53 JetUML-Yearby Year
54 ArgoUML-23Yearsof History
5.5 Elasticsearch — Forty Thousand File Histories
5.6 LibreOffice —200K Filesin 20 Years o o i i v i i e et e e e e e e e
5.7 Linux-Over a Million Commits
58 Summary e

6 Conclusion

6.1 Contributions e e e e
6.2 Future Work o e e e
6.3 Epilogue

A Sonic Pi for System Evolution Auralization
B Evolution of ArgoUML

C Evolution of Elasticsearch

D Evolution of LibreOffice

E Evolution of Linux

47
48
51
53
56
58
60
62
66

67
67
68
69

71

73

87

93

105

xi

List of Figures

2.1
2.2
23
24
25
2.6
2.7
2.8
29
2.10
211
212
2.13
2.14
2.15
2.16
217
2.18
2.19
2.20
2.21
2.22
2.23

3.1
3.2
3.3
34
3.5
3.6
3.7
3.8
39
3.10
3.11

4.1
4.2
4.3
44
4.5

Flowchart presented by Haibtin 1959 3
NSD of the factorial function L o 4
Balsa-II e 4
Rigi . . . o 4
Seesoft e 5
Jinsight L e 5
Timewhell 5
BDwheel 5
Infobug 5
A schematic display of the Evolution Matrix 6
Some characteristics of the Evolution Matrix 6
RelVis o e 7
Tree of Discrete Time Figures 7
EvolutionRadar 7
Evo-Streets e 7
CodeCity e 8
CityVR . . o e 9
ChronoTwigger e 9
CuboidMatrix e e 9
Evo-Clocks o e 9
RHDB e 10
RepoFS . . . o o e 10
CocoViz . . . o e 11
Evolutionary Model 14
Rebuilding history example L L 16
Partial historyexample 17
Example of a file type’staxonomy L L oo 17
2D Representation of the structural evolution of a repository 18
Example of three different grouping strategies 20
Outward spiral layout 21
Mapped colors to gitactions 22
The aging process of an entity whose last action was an ADD and the maximum age is 10 . . 22
Mappings of file properties and metrics to view specifications 23
Example of how the auralization approachworks 24
Architecture of SYN e 26
Class diagram of Projectentities 27
Example partitioning of a commit tree with three workers 32
Example of the process of retrieving a view through GraphQL 36
SYN Visual Inspector mainpage 37

xii

4.6 Project setup: componentselection L L oo o 38
4.7 Project setup: grouping strategy L L oL o 38
4.8 Projectsetup: shapesettings L L L 39
49 Projectsetup: viewcolor L 40
4.10 Projectsetup: view settings L Lo 40
4.11 Visualization of JetUML with the defaultsettings 42
4.12 Visualization of JetUML with shadows, deleted entities and custom shapes for non-java files 43
4.13 Example of a system rendered with POV-Ray (LibreOffice) 43
414 Interfaceof SonicPi L 44
415 Chartsused todebugthemelody o oL 45
51 Comparison of commits with a low and a high activity 48
5.2 Subset of the most significant commitsin JetUML 50
5.3 Firstsix months of JetUML’sevolution 52
54 Evolutionof JetUML e 54
54 Evolutionof JetUML e 55
5.5 Hotspotsin the evolutionof ArgoUML 57
5.6 Hot spots during the evolution of Elasticsearch 59
5.7 Hot spots during the evolution of LibreOffice 61
5.8 Framesof Linux’s Evoltution 63
5.9 Hot spots during the evolutionof Linux 65
5.10 Comparison of the projects” statein June2022 66
B.1 ArgoUMLinJanuary 1999 e 73
B.2 ArgoUMLin January 2000 74
B.3 ArgoUMLinJanuary 2001 74
B.4 ArgoUMLin January 2002 75
B.5 ArgoUMLinJanuary 2003 e 75
B.6 ArgoUMLin January 2004 e 76
B.7 ArgoUMLinJanuary 2005 e 76
B.8 ArgoUMLinJanuary 2006 e 77
B9 ArgoUMLin January 2007 77
B.10 ArgoUML in January 2008 78
B.11 ArgoUML in January 2009 e 78
B.12 ArgoUML in January 2010 L 79
B.13 ArgoUML in January 2011o o 79
B.14 ArgoUMLin January 2012 L 80
B.15 ArgoUML in January 2013 80
B.16 ArgoUMLin January 2014 e 81
B.17 ArgoUML in January 2015 L 81
B.18 ArgoUMLin January 2016 e 82
B.19 ArgoUML in January 2017 L 82
B.20 ArgoUML in January 2018 L e 83
B.21 ArgoUMLin January 2019 83
B.22 ArgoUML in January 2020 e 84
B.23 ArgoUML in January 2021 L 84
B.24 ArgoUML in January 2022 85
C.1 Elasticsearchin June 2014 e e e 87

C.2 Elasticsearch in June 2015 L e 88

C.3 Elasticsearchin June 2016 0 i e e e e e e 88
C4 Elasticsearch in June 2017 o o o e 89
C.5 Elasticsearchin June 2018 0 0 0 i 89
C.6 Elasticsearchin June 2019 e e e e 90
C.7 Elasticsearchin June 2020 0 0 0 i 90
C.8 Elasticsearchin June 2021 i e e e e e e e e e 91
C.9 Elasticsearch in June 2022 91
D.1 LibreOffice in March 2003 o o e e 93
D.2 LibreOfficein March 2004 e e e 94
D.3 LibreOffice in March 2005 o 0 o e 94
D.4 LibreOffice in March 2006 e e 95
D.5 LibreOffice in March 2007 0 e e 95
D.6 LibreOffice in March 2008 e e 96
D.7 LibreOffice in March 2009 e e e 96
D.8 LibreOffice in March 2010 o o v i e e e e 97
D.9 LibreOffice in March 2011 e e 97
D.10 LibreOffice in March 2012 o o o e e e e e 98
D.11 LibreOffice in March 2013 o e e e e 98
D.12 LibreOffice in March 2014 o o 0 e e e 99
D.13 LibreOffice in March 2015 e e e 99
D.14 LibreOffice in March 2016 o 0 o e e 100
D.15 LibreOffice in March 2017 e e e e 100
D.16 LibreOffice in March 2018 e 101
D.17 LibreOffice in March 2019 e e e 101
D.18 LibreOffice in March 2020 e 102
D.19 LibreOffice in March 2021 o o 0 o e e e 102
D.20 LibreOffice in March 2022 0 e e e 103
D.21 LibreOffice in June 2022 0 e e e e 103
E1l Linuxin April2006 e 105
E2 Linuxin April2007 e 106
E3 Linuxin April2008 e 106
E4 Linuxin April2009 e 107
Eb5 Linuxin April2010 e 107
E6 Linuxin April2011 e 108
E7 Linuxin April 2012 e 108
E8 Linuxin April2013 e 109
E9 Linuxin April2014 e 109
E10 Linuxin April 2015 o o e 110
E11 Linuxin April 2016 o e 110
E12 Linuxin April 2017 o e 111
E.13 Linuxin April 2018 e 111
E14 Linuxin April 2019 o e 112
E.15 Linuxin April 2020 e 112
E.16 Linuxin April 2021 e 113

E17 Linuxin April 2022 L e 113

XV

List of Tables

3.1

5.1
52
53
54
55
5.6
5.7
5.8
59

Example of metrics collected and inherited for each FileType 17
List of analyzed projects 47
Settings shared among all casestudies L o oL 47
View Specification of JetUML — Evolution Overview 49
View Specification of JetUML — The Beginnings 51
View Specification of JetUML —Yearby Year 53
View Specification of ArgoUML - 23 Yearsof History 56
View Specification of Elasticsearch — Forty Thousand File Histories 58
View Specification of LibreOffice — 200K Filesin20 Years 60
View Specification of Linux — Over a Million Commits 62

Chapter 1

Introduction

In 1971, Dijkstra made an analogy between computer programming and art [14]. It stated that it is not es-
sential to learn how to compose software; instead, it is necessary to develop its own style and implications.
Software development is a complex process involving many people and development tools and their inter-
actions. This is one of the multiple factors that characterize software complexity. Modern software systems
are characterized by sheer size and complexity. Software maintenance takes up most of a system’s cost.
It is hard to quantify the impact of software maintenance on the global cost of the software. Researchers
estimated it to be between 50% and 90% [11, 47, 17, 46]. Many factors influence the maintenance cost;
among these is the understanding activity needed to perform maintenance tasks [8]. Comprehending soft-
ware evolution is essential for systems” understandability and, consequently, maintainability. However,
the sheer quantity and complexity of the information generated during systems development challenge
the comprehension process. Lehman and Belady, in 1985, were among the first to observe that maintaining
a software system becomes a more complex activity over time [33]. The term “software evolution” was
used for the first time in their set of laws. One goal of software evolution analysis is to identify potential
defects in the system’s logic or architecture.

Numerous techniques have been presented in the literature to facilitate program comprehension [31, 9,
50, 58, 1, 52]. The main challenge they have to deal with is identifying relevant aspects to be presented so
that the user does not get lost in the myriad of information. Software visualization is a specialization of
information visualization with a focus on software [32].

In literature, many visualization techniques have been presented to support a complex software sys-
tem’s analysis. Usually, a massive quantity of multivariate evolutionary data needs to be depicted. Several
tools have been proposed in the literature to do that [38]. The central idea of this thesis is a visualization
technique to support evolution analysis, complemented by an auditive depiction of the evolution. Many
researchers studied the advantages given by audio as a communication medium [2, 53, 3, 36, 35]. The term
“program auralization” refers to communicating information about the program in an auditory way [?].

We present an approach based on synesthesia, the production of a sense impression relating to one
sense by stimulation of another sense. The approach represents the evolutionary process through an in-
teractive visual depiction of the evolving software artifacts complemented by an auditive portrayal of the
evolution. Our technique models and mines large git repositories. The approach is exemplified in SYN, a
web application that enables sensorial software evolution comprehension.

2

Chapter 1. Introduction

1.1

Contributions

We summarize the main contributions of this work as follows:

1.2

an approach to mine and model the history of a system’s evolution;

an interactive, visual 3D representation of evolving software artifacts;

an auralization approach to compose music based on a system’s evolution;
a supporting tool that implements our approach;

case studies on open-source systems.

Document Structure

This document is organized as follows:

In Chapter 2, we describe state of the art in software visualization, repository mining, and software
auralization. We look at evolution models and 2D /3D visualizations.

In Chapter 3, we describe our approach based on mining software repositories and modeling their
evolution, visualizing evolving software artifacts, and auralizing the system’s evolution.

In Chapter 4, we present SYN, a supporting tool that implements our approach.

In Chapter 5, we preliminary validate our approach by analyzing five open-source software systems
and reporting our findings.

In Chapter 6, we summarize our work and discuss possible directions for future work.

Chapter 2

State of the Art

2.1 Software Visualization

Software maintenance and evolution are essential parts of the software
development lifecycle. Both require that developers deeply understand
their system. Mayrhauser and Vans defined program comprehension as a
process of “knowledge to acquire new knowledge” [55]. Generally, program-
mers possess two types of knowledge: general and software-specific
knowledge. Software comprehension aims to increase this specific of the
system and can leverage software visualization techniques for this pur-
pose. Software visualization supports understanding software systems
by visually presenting various information about them, e.g., their archi-
tecture, source code, or behavior. Stasko et al. [18] conducted a study
in 1998 that shows how visualization arguments human memory since it
works as external cognitive aid and thus, improves thinking and analysis
capabilities.

There are cases when software visualization can be used to aid the
analysis activity. For example, when programmers need to comprehend
the architecture of a system [41], when researchers analyze version con-
trol repositories [20], or to support developers” activities [34].

According to Butler et al. [5] there are three categories of visualiza-
tion:

® Descriptive visualization. Widely used for education purposes, the
visualization is used to present data to other people.

¢ Explorative visualization. Used to discover the nature of the data
being analyzed. With this visualization, the users do not necessar-
ily know what they are looking for; e.g. they explore possibilities
for improvement.

* Analytical visualization. Adapted when we need to find something
known in the available data.

Software visualization approaches vary with respect to two dimensions:

the level of abstraction and the visualized data. According to the type of FiGuRE 2.1: Flowchart presented

the data, we can classify visualization as:

¢ Evolutionary visualizations: Depicts the development history of a
system. Mainly used to find the cause of problems in software.

¢ Static visualizations: Used to present information extracted with

ENTRANCE TO
PROGRAM

d ok ok ok ok kR ok kR % %
10 20
P.3

UNCOND
ok ok ok ok ok ok ok ok kK K

L I

*
*
*
*
*
*

A%
% ok ok k ok k ok ok Kk k ok k Kk
30 30 *
P.3 *
*

UNCOND *
d ok ok ok kK K ok ok kK ok ok

* KR ¥ XX

v
® ok ok ok Kk ok ok ok ok K ok ok
40 130 =
P.2

*
*
KISTOS *
GREATER LESS, = #
* K kK K K K Kk ok k ok ok

* K KX F KX

d ok ok k ok k ok ok ok %
140 1
P.3

IISTO 3
GREATER LESS,
H ok ok kK ok k k%

* WX R X XK

v
d ok ok ok ok ok ok ok ok ok ok ok

*
* 150 160 *
* P.3 *
* *
* TOP *
*

* k k ok k ok ok ok Kk ok k ok ok

v
EXIT FROM
PROGRAM

by Haibt in 1959

static analysis of the software. It provides information about the structure of the system.

4 Chapter 2. State of the Art

* Dynamic visualizations: Shows results of dynamic instrumenta-
tion of the software execution. It provides information about the
behavior of the system.

Moreover, the level of abstraction can be classified as follows:

¢ Code-level visualization: where fine granted sourcecode information is highlighted, such as the lines
of code.

¢ Design-level visualization: used to visualize self-contained source code entities, such as classes in
object-oriented systems.

¢ Architectural-level visualization: depicts the system architecture and the relationships among its
components.

The earliest software visualization techniques in the literature used 2D diagrams. For example, Haibt,
used them already in 1959 and provided a graphical outline of a program and its behavior with flowcharts
[21]. As shown in Figure 2.1, they were 2D diagrams that described the execution of a program. He
wrapped each statement in a box, representing the control flow with arrows. Ten years later, Knuth con-
firmed the effectiveness of flowcharts [29]. He found that programs around that time were affected by a
lack of readability. Therefore, he introduced a tool to generate visualizations from the software documen-
tation automatically. Nassi and Schneiderman [40], in 1973, introduced the Nassi-Shneiderman diagram
(NSD), shown in Figure 2.2, to represent the structure of a program. The diagram was divided into multi-
ple sub-blocks, each with a given semantic based on its shape and position. In the 80s, researchers followed
two main directions for software visualization. The first was the source code presentation. For example,
Hueras and Ledgard [22] then Waters [56] developed techniques to format the source code with a pret-
typrinter. The second direction was the program behavior, mainly for educational purposes. One of that
period’s most prominent visualization systems was Balsa-II [4] (Figure 2.3). Balsa-II was a visualization
system that, through animations, displayed the execution of an algorithm. Programmers could customize
the view and the control execution of the algorithm to understand them with a modest amount of effort.
The program was domain-independent, and learners could use it with any algorithm. Around the end of
the 80s, Miiller et al. [39] released Rigi (Figure 2.4), a tool to visualize large programs. It exploited the graph
model, augmented with abstraction mechanisms to represent systems components and relationships.

& File Edit Run Windows RIgs Uiews Inputs

N FF\(\ . Z Vlnwr\um Sort: running

D0 I=37T0N
NFACT =1

RFETURN NFACT

FIGURE 2.3: FIGURE 2.4:
Balsa-II

FIGURE 2.2:
NSD of the fac-
torial function

In the 1990s, there was more interest in the field of software visualization. In 1992, Erik et al. introduced
anew technique to visualize line-oriented statistics [15]. It was embodied in Seesoft (Figure 2.5), a software

2.1. Software Visualization 5

visualization system to analyze and visualize up to 50,000 lines of code simultaneously. In their visualiza-
tion, each line was mapped to a thin row. Each row was associated with a color that described a statistic of
interest, e.g., red rows are those most recently changed, and blue are those least recently changed.

One year later, De Pauw et al. [12] introduced Jinsight (Figure 2.6), a tool to provide animated views of
object-oriented systems’ behavior.

Inter—lass Calls

nnnnn

= objectise
a
- [conpoundExpres

FIGURE 2.5: Seesoft FIGURE 2.6: Jinsight

That period was favorable also for experimenting with novel research directions for visualization, such
as 3D visualization and Virtual Reality. In 1998, Chuah and Erick [6] proposed three techniques to visual-
ize project data. They leveraged glyphs, a graphical object that represents data through visual parameters.
The first technique was the Timewhell glyph (Figure 2.7), to visualize time-oriented information (number
of lines of code, number of errors, number of added lines). The second technique was the 3D wheel glyph
(Figure 2.8). It encoded the same attributes of the time wheel and used the height to encode time. Infobug
(Figure 2.9) glyph was the last technique, where each glyph was composed of four parts, each representing
essential data of the system, such as time, code size, and the number of added, deleted, or modified code
lines.

— metG

L

ile

- II Ter .Y or ¥ RO o
. .E
m) __]_L'__ji-lq "
- -~ -
release-1 relesse:2 release-3 release-d
Tt aY ano . s
. - al s
—— - c =
wlm‘-erﬁ release-7 release-

-~

relesse-5 fhoees)

FIGURE 2.8:
3D wheel

FIGURE 2.7:

Timewhell FIGURE 2.9:

Infobug

Also in 1998, Young and Munro [59] explored representations of software for program comprehension
in VR.

Finally, in 1999, Jacobson et al. [23] introduced what we now know as de facto the standard language
to visualize the design of a system: UML.

6 Chapter 2. State of the Art

At the beginning of the 21st century, thanks to the spread of version control systems and the open-
source movement, visualizing a software system’s evolution became a more feasible activity thanks to
publicly accessible system information. As a result, many researchers focused their work on software
evolution visualization.

Lanza [31] introduced the concept of the Evolution Matrix (Figure 2.10). It was a way to visualize the
evolution of software without dealing with a large amount of complex data. Furthermore, this approach
was agnostic to any particular programming language. The Evolution Matrix aimed to display the evo-
lution of classes in object-oriented software systems. Each column represented a version of the system,
and each row represented a different version of the same class. Cells were filled with boxes whose size
depended on evolutionary measurements. The evolution matrix allows us to make statements on the evo-
lution of an object-oriented system at both the system and class levels. For example, in Figure 2.11, at
system level, we are able to recover information regarding the size of the system, the addition and removal
of classes, and the growth or stagnation phases in the evolution.

Version] Version 2 Version3 Version 4 L oOlooooo oo D@\ LAST VERSION
— Oy o REMOVED CLASSES
Class A L) DDD@GDDDDDDDDDDDDE
Class B - — 0 Ol DO0DC0O0OD 0000 00
_____ O0CO0OO0ODDO 000000 oo
Class C O - |:||:] / OO0 oo o000 0OoCcOo0O0Oo|ls
OF THE SYSTEM Ooooooooooooooolo
Class D []] []| 3 ojooocooooocoooooo|o
----- Doooooooooooooolo
et ——DooDoooDoOOO0OoOOoOoo
. ' ' ‘ 4 - - - - i i e I e e o R e R e B B e R)
' : ‘ : ; Ooooooo00DDOoOo0O Qo0
' ' ' ' T =R=N=]=g=Y=g=g=]=]=1=K=1=]|=]}
TIME DORONTHMASE N STAGMTINRASE s sessasaezessaenas -
FIGURE 2.10: A schematic display FIGURE 2.11: Some characteristics
of the Evolution Matrix of the Evolution Matrix

Taylor and Munro [51] demonstrated that it was possible to use the data contained in a version con-
trol repository to visualize the evolution of a system. They developed Revision Tower, a tool that showed
change information at the file level. Pinzger et al. [42] visualized the evolution of a software system through
Kivat diagrams. RelVis, the tool they developed, depicted a multivariate visualization (Figure 2.12) of the
evolution of a system. It was built on Kiviat diagrams, designed to visualize multivariate data such as
source code and evolution metrics. During the same year, Ratzinger et al. presented EvoLens [43], a visu-
alization approach and tool to explore evolutionary data through structural and temporal views. Langelier
et al. [30] investigated the interpretation of a city metaphor [28] to add a new level of knowledge to the
visual analysis. D’Ambros and Lanza [9] introduced the Discrete-Time Figure concept (Figure 2.13). It was
a visualization technique that embedded historical and structural data in a simple figure. Their approach
depicted relationships between the histories of a system and bugs. They presented Evolution Radar [10]
(Figure 2.14), a novel approach to visualizing module-level and file-level logical coupling information.

2.1. Software Visualization 7

74 ok : .

hdeth!
16 niPackages i
SeaMonkey Browser

DouM

FIGURE 2.12: FIGURE 2.13: FIGURE 2.14:
RelVis Tree of Discrete Evolution
Time Figures Radar

Steinbriickner and Lewerentz [50] described a three-staged visualization approach to visualize large
software systems. Their visualization was supported by a tool called Evo-Streets. Each stage of their ap-
proach yields a specific model that evolved through the stages. In the first stage, they created a model
containing all the structure of a software system and its evolution. In the second stage, geometrics infor-
mation is added, such as the city layout or landscape elevation. Finally, in the third stage, they added
projections, colors, and symbols to the visualization.

FIGURE 2.15: Evo-Streets

Wettel revised the city metaphor to represent metrics meaningfully [58]. In his thesis, he represented
packages as districts and classes as buildings. The metaphor was used for various purposes, e.g., reverse

8 Chapter 2. State of the Art

engineering, program comprehension, software evolution, or software quality analysis. He claimed that
the city metaphor brought visual and layout limitations; for example, not all visualization techniques fit
well. Under those circumstances, he preferred simplicity over accuracy, so he obtained a simple visual
language that facilitated data comprehension. His approach was implemented as a software visualization
tool called CodeCity (Figure 2.16).

Component DatabaseMetaData
Character java.awt e ke
java.lang LOC: 3'324 LOC..O Bits
LOC: 1414 NOM: 280 o 28 javanio
NOM: 86 NOA: 88 ’ LOC: 484
NOA: 69 NOM: 115
NOA: 10 Calendar

java.util
LOC: 749
NOM: 71

~ 24 ICC_Profile
java.awt.color

KeyEvent
java.awt.event LOC: 849
L’\(IDOCM4£132 \ NOM: 41
oM 18 A 2 NOA: 130

FIGURE 2.16: CodeCity

Ens et al. [16] applied visual analytics methods to software repositories (Figure 2.18). His approach
helped users comprehend co-evolution information by visualizing how source and test files were devel-
oped together. Kapec et al. [26] proposed a graph analysis approach with augmented reality. They made
a prototype of a tool that provided a graph-based visualization of software, and then they studied some
interaction methods to control it with augmented reality. Schneider et al. [45] presented a tool, CuboidMa-
trix (Figure 2.19), that employed a space-time cube metaphor to visualize a software system. A space-time
cube is a well-known 3D representation of an evolving dynamic graph. Merino et al. [37] aimed to aug-
ment software visualization with gamification. They introduced CityVR (Figure 2.17), a tool that displays
a software system through the city metaphor with a 3D environment. Working with virtual reality, they
scaled the city visualization to the physically available space in the room. Therefore, developers needed to
walk to navigate the system.

Khaloo et al. [27] revised the idea of gamification with a 3D park-like environment. They mapped
each class in the codebase with a facility. The wall structure depended on the class” constituent parts,
e.g., methods and signatures. Finally, we mention Alexandru et al., who proposed a method to visualize
software structure and evolution with reduced accuracy and a fine-grained highlighting of changes in
individual components [1]. Figure 2.20 shows a view of Evo-Clocks, the tool they developed.

2.2 Software Evolution Analysis

Version control systems track historical data in repositories about the evolution of a system. Git has become
the most popular version control system today since Linus Torvald introduced it in 2005. Many collabora-
tion platforms (e.g., GitHub and GitLab) also rely on it. With the increased popularity of such platforms,

2.2. Software Evolution Analysis 9

FIGURE 2.17: = = —T

: FIGURE 2.18:
CityVR ChronoTwig- FIGURE 2.19:
ger CuboidMatrix

History range selection

2011

2018 2012

2015 2014

From (0: 4631aef659d3795b |

Scoll Carey

[16. December 2010 0()

To [304:0e6977d1b89co]
11. March 2019 22:03

idden packages

Range coloring
[Revision (" Authors]
Author name contain:
by CK metric

by other metric

FIGURE 2.20: Evo-Clocks

millions of open-source systems are developed publicly. They have also become popular targets for Mining
Software Repositories (MSR) research.

D’Ambros et al. [52] presented an analysis and visualization techniques to understand software evolu-
tion. They developed an approach based on a Release History Database (RHDB). It is a database that stores
historical information about source code and bugs. The strength of RHDB (Figure 2.21) was the association
between historical versions of flies and bugs. Having this information stored in a database, they were able
to run an evolution analysis to obtain information such as the number of developers needed to fix a bug.

Finally, they concluded two main challenges in MSR:

¢ Technical challenge: repositories contain a sheer amount of data, posing scalability problems.

¢ Conceptual challenge: how to leverage the collected data. Most of the approaches to visualizing
software evolution have unanswered questions about the effectiveness of the comprehension.

10 Chapter 2. State of the Art

: [FileHistory | S
resfile Alias
1
Project 1 . = Mad_ule 1 . Directory workingfile ' =
modules directories files head ham
files ; subdirectories locke o scount
« | revisions
1
idd St FileVersion
i VErSIon
ShontDaseript filaHistory
~BugDescription | sohsnrtDescnptlon prorsl
twaﬁ,t:, priority ;u;?eﬁr nam‘“ﬂ““"“'
praduct .
when component linesAdded
resolution linesAemoved
gaContact branches
LongDescriptions LcommitMessage |

FIGURE 2.21: RHDB

In 2022, there are around 200 million GitHub repositories.! Even if it seems a promising data source,
Kalliamvakou et al. raised some issues with its mining [25]. For example, they found that a repository
does not always match a project. A reason for this can be that most repositories had very few commits
before becoming inactive. Over 70% of the GitHub projects were personal when they did their research,
and some weren’t used for software development. Finally, the last perils they raised were related to GitHub
features improperly used by developers. They considered only projects with a good balance between the
number of commits, the number of pull requests, and the number of contributors to find actively developed
repositories.

Spadini, Aniche, and Bacchelli [49] developed a Python framework called PyDriller, enabling users to
mine software repositories. Their tool can be used to extract information about the evolution of a software
system from a git repository.

We also mention the work of Salis and Spinellis [44]. They introduced RepoFS, a tool that allows nav-
igating a git repository as a file system. Their approach sees commits, branches, and tags as a separate
directory tree. Figure 2.22 shows an example of a repository data structure.

Ceed> [D

FIGURE 2.22: RepoFS

Clem and Thomson [7], members of the semantic code team at GitHub, built a static analyzer of reposi-
tories to implement symbolic code navigation. That feature was released on GitHub in 2020 years ago and
lets developers click on a name identifier to navigate to the definition of the selected entity. They were
looking for a solution without scalability problems. Moreover, they built the symbolic navigation feature
around the following ideas:

1https: / /en.wikipedia.org/wiki/GitHub

2.3. Program Auralization 11

® Zero configuration needed by the owner of a repository.

¢ Incrementality of the process. There was no need to process the entire repository for every commit
made by a developer. Instead, they analyzed only the files changed.

* Language agnosticism of the static analysis.

Working on that feature, they recognized the difficulty of scaling a static analysis to large and rapidly
changing codebases. Nevertheless, their idea was to have an agnostic static analyzer, but they could not
reach this goal, and they were forced to implement it for nine programming languages.

2.3 Program Auralization

e0o0 CoCoViz
ource —
T Library (>999) [Cylinder =
© Snapshot Famix Objects
€ Imported Famix Objects
© Tagged Famix Objects
¥ Potential Data Class 1
potential Data Class 2
¥ Potential Brain Method
@ Potential God Classes C)
@ Potential Shotgun Surgery
¥ Potential Feature Envy
packages and Classes
@ All Classes
@ All Methods
1 All Packages (397)

[Use Speech []

visible @ 3.05 =]

org.gudy.azureus2.ui.swt

[Comments_|

CO

Amount |

Metric
Halstead Effort

8558512 m
Halstead Effort 7832962
f | Halstead Effort 7706700
i Halstead Program Vo... 186933
Jf J) i | Halstead Program Vo... 172796
T T 1 Halstead Program Le... 24098
—— / }’ J i [Halstead Program Le... 22406
3.0.5 L ! Halstead Program Le... 21658
3_1_0 / Number of Operators 12724 b
Bilil b) Number of Operators 11918 :
.................. 110c7
I ra— R 1 [N[
i | - LI:J 3 ‘ 2 | 0 425 VisualObjets ‘ " 7 LN || / ‘

FIGURE 2.23: CocoViz

External auditory representations of programs (known as “program auralization”) is a research field
getting even more interest in recent years.

Sonnenwald et al. made one of the first attempts [48]. They tried to enhance the comprehension of
complex applications by playing music and special sound effects. This approach was supported by a tool
called InfoSound. It was mainly adopted to understand the program’s behavior.

Many other researchers followed this first technique. To cite some of them, DiGiano and Baecker [13]
made LogoMedia, a tool to associate non-speech audio with program events while the code is being devel-
oped. Jameson [24] developed Sonnet audio-enhanced monitoring and debugging tool. Alty and Vickers
[54] had a similar idea. Using a structured musical framework, they could map the execution behavior of
a program to locate and diagnose software errors.

Despite the usefulness of these tools, they adopted an essential kind of mapping, and thus they had
a limited musical representation. Vickerts [53] found the necessity of a multi-threaded environment to
enhance the comprehension given by the musical representation. He proposed adopting an orchestral
model of families of timbres to enable programmers to distinguish between different activities of different
threads.

12 Chapter 2. State of the Art

Boccuzzo and Gall [3] supported software visualization with sonification, the use of non-speech audio
to convey information or perceptualize data. They used audio melodies to improve navigation and com-
prehension of their tool, called CocoViz (Figure 2.23). Their ambient audio software exploration approach
exploited audio to describe an entity’s position in space intuitively. Thanks to the adoption of surround
sound techniques, the observers perceived the origin of an audio source so it could adjust their navigation
in the visualization. Each kind of entity played a different sound based on mapping criteria.

Mclntosh et al. [36] explored the use of parameter-based sonification to produce a musical interpre-
tation of the evolution of a software system. Their technique mapped musical rests to an inactive period
of development, consonance, and dissonance to interesting phenomena (like co-changing components).
Finally, Mancino and Scanniello [35] presented an approach to transforming source code metrics into a
musical score that can be both visualized and played.

24 Conclusion

We have seen many different techniques and tools focused on visualizing the source code of software
systems, their evolution, or their metrics. Our evolution focuses on the evolution of a software system and
how its metrics change over its history. In contrast to what some tools did, we do not focus on the evolution
of code bugs.

The codebase of a system is composed of a group of files. In our approach, each file represents a system
entity that mutates over time. It is not based on a previously identified metaphor, such as CodeCity or
City VR with the city metaphor. We created a new layout where the position of each entity is defined by its
discovery time.

At present, git has become the standard tool for version control. Having this in mind, we aim to find a
suitable model to represent the histories of mined git repositories. Therefore, we created a model inspired
by the EvolutionMatrix, but with adjustments to make it work with git.

As Clem and Thomson [7] team did, we propose a scalable approach that works with large repositories.
It differs from what they did because we are not focused on a semantic analysis of the source code; instead,
we extract source code metrics. Moreover, our technique is purely language-agnostic.

Finally, we extended our approach with an auralization approach to compose music based on a sys-
tem’s evolution. Conversely to state-of-the-art tools, we used a multithreaded environment to play the
musical notes. Whereas CocoViz used audio melodies to support the navigation of space created for the
visualization, we mapped sounds to the magnitudes of changes in a given moment.

13

Chapter 3

Approach

Comprehending the evolution of a software system is a complex activity, mainly because of the sheer
amount of data and its complexity. The term “software evolution” was coined for the first time by Lehman
in 1985 in a set of laws [33]. He stated that the complexity of a system is destined to increase over time
as the system needs to be adapted to its evolutionary environments. To be maintained, software systems
need to be comprehended by developers, and this activity can be supported with software visualization.

The development activity is often supported by a Version Control System (VCS) software for tracking
and managing file changes. VCSs have been widely adopted for the last 40 years. Revision Control System
(RCS) is one of the oldest, and it was introduced in 1980. Consequently, between 1990 and 2020, developers
introduced several VCSs. The most important ones were Concurrent Versions System (CVS) introduced in
1990, Perforce (1995), Subversion (2000), Mercurial, and Git (2005).

One of the most adopted ones is Git, introduced in 2005 by Linus Torvalds'. Millions of repositories
use it on GitHub and GitLab. For this reason, we focused on systems versioned with this protocol. Git is a
versioning control system that tracks all the changes made to every system file. Internally git holds all the
information we need to reconstruct the history of a repository.

In this chapter, we present our sensorial approach to visualizing a software system using a visual and
auditive depiction of its evolution. To fulfill this purpose, we leverage synesthesia, the production of a
sense impression relating to one sense by stimulation of another sense. Moreover, we also present how we
reconstruct and model the history of a repository.

In this chapter, we present the three main steps of our approach as follows:

¢ first, we model the system’s evolution;
¢ next, we visualize it;

e finally, complement the visualization with an auditive portrayal of evolutionary data.

Ihttps://github.com/git/git/commit/e83c5163316£89bfbde7d9ab23ca2e25604af290

https://github.com/git/git/commit/e83c5163316f89bfbde7d9ab23ca2e25604af290

14 Chapter 3. Approach
3.1 Evolution Model

ProjectHistory ¢ ProjectVersion
1 =
1 T 1 T
FileHistory ’— FileVersion
1 .

FIGURE 3.1: Evolutionary Model

Various approaches have been proposed to analyze aspects of software evolution. In 2005, Tudor Girba
presented Hismo [19], a model centered around the notion of history as a first-class entity. Our approach
is based on this work. The need to develop a novel evolutionary model comes from the fact that Hismo
was designed to work with another versioning system: Subversion (SVN). There are several differences
between SVN and git. In terms of design, the most important is how they track changes. SVN works
with the concept of “snapshot” while git works with the concept of “commits”. In SVN, when a file has
been changed, a new revision of the whole system is created, and consequently, the number of revisions
is incremented. In contrast, in git, only the modified files would get committed, and thus we don’t have a
new snapshot of the system every time. Therefore, we took Hismo as the starting point of our model and
adapted it to the git protocol. The Hismo model was based on three concepts:

¢ Snapshot. A representation of the entity whose evolution is studied.
¢ Version. A representation of a system’s version. It defines the time when a snapshot was made.
¢ History. An entity that holds a set of Versions.

We replaced the concept of Snapshot with a FileVersion. It represents the version of a file at a particular
point in time. Instead of being related to every version of the system, it is related only to the Versions
when the file was updated. Moreover, we made a distinction between File entities and Project entities.
So, we mapped the concept of History to FileHistory and the idea of Version to ProjectVersion. The entity
responsible for holding both of them is called ProjectHistory. Figure 3.1 depicts the relationships among
these concepts. To summarize, these are the four main concepts of our evolutionary model:

* ProjectHistory: represents the history of a repository. It holds two sets: a set of FileHistories and a
set of ProjectVersions.

¢ FileHistory: represents a file inside the repository. We consider each file as an entity of the system.
Even if the entity’s name or location is changed, our model will treat it as the same. So, our approach
is resilient to renaming and moving activities. Each FileHistory holds a set of FileVersions, each
representing a different version of the entity at a particular point in time.

* ProjectVersion: represents a commit or a version of the system. For each changed file inside a com-
mit, the respective ProjectVersion contains a FileVersion representing that change. A ProjectVersion
holds contextual information about the commit, such as its timestamp, hash, and message.

¢ FileVersion: represents the version of a file at a particular point in time. It is responsible for holding
all the evolutionary information of an entity, such as the last action on a file.

3.1. Evolution Model 15

3.1.1 Historical information retrieval

To model the history of a repository, we need to extract the historical information from git. Git works with
the concept of branches. Each branch can be seen as a different repository timeline. Usually, developers use
branches to develop features and merge the developed code in a branch that contains the stable codebase.
They create a “merge commit” to do that. Each time developers create a new git commit, they deploy a
new version of the system that records all the changes made to the commits’ tracked files. Internally, in
git, all git stores all the commits as nodes of a commit-tree. The root node represents the repository’s first
commit and has no parents. All the other nodes represent the commits made during the whole lifecycle of
the repository. Each commit usually has only one parent representing the previous commit. There is one
case where a commit might have more than one parent: merges commits.

Each repository should have a branch containing stable, production-ready code as a convention. Usu-
ally, this branch is named “main” or “master”. In our approach, we aim to analyze the timeline of this
stable branch. We start from the root of the commit tree, which represents the initial commit, and then
we traverse the whole tree. We do not consider “merge commits” during this process since they already
incorporate previous commits, and thus they would be considered twice. Once we have extracted all the
valid commits that reside on the stable branch, we need to extract all the representative information for a
ProjectVersion.

Git can recognize the following file actions:

e ADD. A file is added to the repository.

* DELETE. A file has been removed from the repository.

* MODIFY. The contents of a file have been modified.

* RENAME. A file’s name has been changed but the file remained in the same parent directory.

e MOVE. A file was moved from one location to another. This action is detected whether the file’s
name remains the same.

From a commit, we could a