
Measuring Navigation Efficiency in the IDE
Roberto Minelli, Andrea Mocci, Michele Lanza

REVEAL @ Faculty of Informatics — University of Lugano, Switzerland

Abstract—While coding, developers construct and maintain
mental models of software systems to support the task at hand.
Although source code is the main product of software devel-
opment, the process involves navigating and inspecting entities
beyond the ones that are edited by the end of a task. Developers
use various user interfaces (UI) offered by the Integrated Devel-
opment Environment (IDE) to navigate the complex, and often
hidden, relationships between program entities. These UIs impose
fixed navigation costs, in terms of the number of interactions that
a developer is required to perform to reach an entity of interest. It
is unclear to what extent the actual navigation effort differs from
an ideal setting, and if there is any room for actual improvement.

We present a preliminary empirical study, where we analyzed
a corpus of IDE interaction data coming from 6 developers
totaling more than 20 days of development activity. To measure
the navigation efficiency, we compute a combination of different
ideal settings and compare them against the observed navigation
events. Our findings reveal that, on average, developers perform
1.5 to 19 times more navigation events than the ideal case. While
different factors make the ideal setting unfeasible, we believe
that this calls for novel approaches to support the navigation in
integrated development environments.

I. INTRODUCTION

Developers build and need to maintain complex software
systems, composed of several parts which often they did not
write. To support their development tasks, and in particular
to support program understanding, they implicitly construct
mental models of the subject software system, e.g., [1], [2].

According to Storey et al., a mental model “includes a
mapping from the specified program goals to the relevant parts
of the implementation” [2]. While it is common ground that
source code is the main product of software development, the
development process involves a larger set of program entities
than the ones that are edited and delivered, i.e., committed
to the version control system, by the end of the task, e.g.,
[3], [4]. Developers often use various user interfaces (UIs)
offered by the Integrated Development Environment (IDE) to
navigate the complex and often implicit and hidden relation-
ships between program entities [5]. This process imposes some
fixed costs, for example, in terms of the number of clicks
that a developer is required to perform to navigate the system
structure and reach the code of a particular program entity.
The actual navigation effort, i.e., the real amount of navigation
events performed by developers, differs from the ideal settings.
Researchers, in fact, proposed different approaches to support
and improve the efficiency of the navigation through software
entities [6], [5]. However, it is unclear to what extent the
actual navigation effort differs from an ideal setting, i.e., how
they can be empirically compared to understand how much
improvement is possible.

During the last years, we developed DFLOW, a profiler for
the PHARO IDE1 [7]. PHARO is a window-based environment
inspired by Smalltalk supported by an active open-source
community. DFLOW records many kinds of interaction events
at different levels of abstraction. For example, DFLOW records
development meta-events like source code modifications and
navigation, UI events like interactions with the windows of the
IDE (e.g., minimization, resizing), and interactions with input
devices like mouse movements, clicks, and keystroke events.
In this work, we focus on a particular subset of interaction
events recorded by DFLOW to empirically investigate how
efficiently developers perform navigation through software
entities using the basic UI components of PHARO. For this
reason, our main focus is on source code navigation events,
for example when the user selects a program entity in the code
browser (see Figure 2), the mostly used UI in the PHARO IDE
to support code navigation and editing. The dataset supporting
our empirical study counts more than 200,000 interaction
events coming from 6 developers, and totaling more than
504 hours (i.e., 21 days) of actual development activity. The
recorded development sessions last on average around 40
minutes, and contain, on average, 276 development meta-
events, 214 of which are navigation events.

To measure the efficiency of developers in navigating source
code, we compare their real navigation effort with a set
of different ideal settings. The ratio between real and ideal
settings provides preliminary estimates for the navigation
efficiency. The ideal scenarios leverage how the developer
could, theoretically, make the most from the user interface and
the components of the IDE while navigating source code. We
assume two different ideal cost models for single navigation
events, and two different models to estimate the ideal working
set required by developers to implement the task at hand in a
given development session.

We discovered that, on average, developers perform 1.5 to
19 times more navigation events than the ideal scenarios. In
half of the cases, however, the efficiency is even worse, with
redundant navigations being from 3 to 30 times more than the
ones needed in ideal settings.

Structure of the Paper: Section II details DFLOW, our
supporting tool, describes the conceptual model of DFLOW
interaction data events, and describes the dataset. Section III
defines the concepts of navigation cost and effort. Section IV
defines the navigation efficiency and reports our results. In
Section V we summarize the related work and Section VI
concludes our work.

1See http://pharo.org



PositionEntities
User Input EventMeta Event

Event
Timestamp
Window ID

User Interface Event

Navigation Event Inspect Event Edit Event
Attributes

Window Event
Attributes

Mouse Event
Key Combination

Keystroke Event

Mouse Moved Mouse Button Mouse Wheel
Direction

Window Collapsed Window ExpandedWindow Moved Window Resized

Window Activated Window Closed Window LabelledWindow Opened

Button IDStart Point
End Point

Old Label
New Label

Initial Position
Initial Extent

Old Position
New Position

Old Size
New Size

Fig. 1. The Conceptual Model of DFLOW Interaction Data Events

II. DFLOW, INTERACTION DATA, AND THE DATASET

This section introduces interaction data (Section II-A) and
DFLOW, the supporting tool we developed to record this data
(Section II-B). Finally, Section II-C details the dataset.

A. What is Interaction Data?

Figure 1 shows the conceptual model of the interaction data
events we consider. We distinguish three main categories of
events by their level of abstraction: meta events, user input
events, and user interface events.

Meta events represent all the interactions of the developer
with program entities, e.g., classes and methods. According
to the impact of the interaction on the source code, we
identify three kinds of meta events: navigation, inspect, and
edit events. Navigation events correspond to the events the
developer performs while exploring source code entities, e.g.,
selecting an entity in the code browser or performing a search
with the appropriate UI. Inspection events represent actions
that a developer performs to understand the execution of a
program. Examples include when the developer debugs a piece
of code or observes the value of a local variable or field.
Finally, edit events represent actual source code modifications,
e.g., adding a new class or editing the body of a method. In
most of the cases, meta events have one or more program
entities associated to them, i.e., when the developer modifies
the source code of the method Foo, the corresponding DFLOW
meta event encodes this information for further analyses.

User input events are the events the developer performs us-
ing an input device, e.g., mouse and keyboard. We distinguish
two categories of events: mouse and keystroke events. All user
input events recorded by DFLOW encode the position of the
cursor when the event happens and other attributes. Keystroke
events, for example, encode the current key combination that
might be a single keystroke (e.g., the key ‘a’) or a real key
combination (e.g., Cmd + ‘v’).

Mouse events have different types and ad-hoc attributes.
For example, the event that represents a mouse move encodes
the initial and final position of the cursor before and after
the movement. Other types of mouse events are clicks and
interactions with the mouse wheel.

User interface events represent the interactions of the
developer with the user interface of the IDE. In the case of
PHARO, the target IDE for our study, the user interface mostly
consists of windows. Thus, user interface events are window
events, such as opening, closing, or resizing a window. Each
event has its own attributes: A resize, for example, encodes
the size of the window before and after the event itself.

Summing Up. Interaction data events consist of all the
events that the developer performs inside the IDE. We believe
these events are important to understand and support the
development process. However, current IDEs neglect these
events preventing further use of the information contained in
them [8]. To persist interaction data, we developed DFLOW,
which is briefly described in the next section.



B. DFLOW: The Interaction Profiler

To record and leverage the interaction data inside the IDE,
we developed DFLOW, a non-intrusive interaction profiler for
the PHARO IDE [7]. The profiler collects more than 30 types of
events, organized as per our conceptual model (see Figure 1).

Once a developer installs DFLOW in her IDE, the profiler
starts to collect data and periodically sends it to our server to
support further analyses. In addition to retrospective analyses,
on top of DFLOW we are also developing approaches to
support the development process, e.g., the PLAGUE DOCTOR,
a prototype that automatically closes unneeded windows in the
IDE [9] to mitigate the window plague [5].

In the last years we distributed DFLOW to different develop-
ers and collected hundreds of thousands of interaction events.

C. The Dataset

Developers working in academia and industry installed
DFLOW and shared their interaction events with us. We
collected hundreds of sessions composed of fine-grained in-
teraction data events. Table I summarizes the subset of the
dataset used for the current study.

TABLE I
THE DATASET

General
Number of Sessions 765
Number of Developers 6

Duration
Avg. Session Duration 39m 36s
Total Development Time 504h 57m 5s

Events (per Session) Q1 Q2 Q3 Avg.
Navigation 56 122 258 213.95
Edit 4 7 13 10.90
Inspect 2 13 44 50.98
Total 86 174 359 275.84

Involved Entities (per Session) Q1 Q2 Q3 Avg.
Navigated 10 19 39 28.85
Edited 2 4 6 5.46
Inspected 1 5 10 7.15
Total 14 25 43 34.30

A development session is a collection of contiguous inter-
action data events without interruptions lasting more than 5
minutes, (i.e., representing inactivity), i.e., whenever DFLOW
detects and interruption, it immediately interrupts the session.

In this work we analyze a corpus of 765 development
sessions totaling more than 500 hours (i.e., 21 days) of actual
development activity. The overall DFLOW dataset is larger,
but for this study we filtered out short sessions, sessions with
few navigation events, and sessions with a small working set,
i.e., number of program entities involved. In the table we only
report information about meta events (see Figure 1), since our
aim is to gather a better understanding of how efficient are
developers in navigating source code.

The resulting dataset features sessions coming from 6 devel-
opers whose background is mostly academic (e.g., researchers,

PhD, and master students), but also includes sessions com-
ing from professional open-source software developers. On
average, sessions last for about 40 minutes (i.e., 39’36”)
and involve 34 program entities (i.e., methods, classes, and
packages). In each session, on average, a developer modifies
5 program entities (i.e., 5.46).

On average, a session features 214 navigation, 11 edit, and
50 inspection meta events, stressing the importance of the
navigation over the other activities. In addition to average
measures, Table I reports values for first, second (i.e., median),
and third quartiles. We observed a large variability, for exam-
ple, in the number of navigation events: Q1=56, Q3=258, and
median of 122. This may suggest that there are tasks in which
developers require more (or less) intensive navigation effort.
However, an investigation of the causes of such variability is
part of our future work.

III. NAVIGATION COST AND EFFORT

This section briefly introduces the PHARO IDE and defines
our model of navigation cost and effort.

A. Intermezzo: Pharo Object Model and Code Browser

One of the most used UIs in the IDE is the code browser that
lets developers navigate, read, and write code (see Figure 2).

The upper part of the browser is mostly used to navigate
source code. In PHARO source code is organized as follows:
• Packages. The first column of the browser lists all the

packages available in the current PHARO image (Fig. 2.a).
• Classes. Once the developer selects a package from the

list, the second column lists all the classes belonging to
that package (Fig. 2.b).
– Metaclasses. In PHARO, each class is an instance of a

metaclass. Thus, there is a metaclass hierarchy which is
parallel to the standard class hierarchy. The developer
can click on a button (Fig. 2.c) to reveal the so
called class side and navigate (or modify) metaclasses
and their methods. A common use of a metaclass is
to create custom constructors, instead of using the
ordinary new method to instantiate a class.

• Protocols. In PHARO, methods are grouped into protocols
that document their intent. Once the developer selects a
class (or metaclass), the third column of the browser lists
all the protocols available in it (Fig. 2.d).

• Methods. Once the developers selects a protocol, the
fourth and last column of the browser lists all the methods
belonging to the selected protocol (Fig. 2.e).

• Source Code. Once the developer selects a method, the
bottom part of the code browser displays its source code
and lets the developer read and modify the code (Fig. 2.f).

B. Basic Navigation Cost

With the PHARO object model in mind, we define the
basic navigation cost needed to reach a given program entity,
expressed in terms of number of navigation events, from a
newly open browser window.



a b d e

c

f

Fig. 2. Code Browser: The User Interface to Navigate and Modify Source Code in the PHARO IDE

a b c d

Fig. 3. Selecting Program Entities in the PHARO Code Browser: (a) no selection, (b) package, (c) class, and (d) protocol

The basic navigation cost to reach a package is 1.

Packages are directly reachable in the first column of the
from the first column of the browser (Fig. 2.a), thus the
developer requires only a single navigation, i.e., the actual
click on the package of interest. Figure 3.b shows the code
browser with a package selected.

The basic navigation cost to reach a class is 2. The
navigation cost becomes 3 if the developer navigates to
the metaclass.

To reach a class, or metaclass, the developer has to select
a package. Thus, the base cost is the basic navigation cost of
a package, i.e., 1. To this cost we sum the actual cost of the
selection of the class. In addition, if the developer wants to
reach the class side, an additional navigation is needed, i.e., the
click on the “class side” button (Fig. 2.c). Figure 3.c shows
a code browser after the selection of a class.

The basic navigation cost to reach a method protocol is 3.
The navigation cost becomes 4 if the developer navigates
to a protocol of the metaclass.

To reach a protocol, the developer has to select a class (or
metaclass). Thus, the base cost is the basic navigation cost of
a class (or metaclass), i.e., 2 or 3 depending if the developer
selected a class or a metaclass. To this cost we sum the actual
cost of the selection of the protocol. Figure 3.d shows the code
browser after the selection of a protocol.

The basic navigation cost to reach a method is 4. The
navigation cost becomes 5 if the developer navigates to a
method of the metaclass.

Finally, to reach a method, the developer has to first select
a protocol. Thus, the base cost is the basic navigation cost of
a protocol, i.e., 3 or 4 depending if the developer selected a
class or a metaclass. To this cost we sum the actual cost of
the selection of the method. Figure 2 shows the code browser
after the selection of a method.



Advocatus Diaboli: The basic navigation cost only con-
siders list selections. In practice, a developer might have to
scroll through the list before actually selecting an entity of
interest. This is true, but to make the comparison adequate,
we only call “navigation events” the events that represent
actual selections of entities in the code browser lists. Thus
we believe our simplification is consistent with our goal, i.e.,
to understand to what extent an ideal navigation effort differs
from what we observe in the recorded navigation histories.

C. Navigation Effort
The “navigation effort” is the act of navigating source code

elements. We define the real navigation effort as the number
of navigation events that the developer performs to reach the
edited entities. To measure the navigation efficiency, however,
we define an ideal estimate as term of comparison, as follows:

The ideal navigation effort is the sum of the navigation
costs needed to reach the edited program entities in a
development session.

Navigation cost and edited program entities, can be treated
in different ways, obtaining more (or less) ideal settings.

Edited Program Entities
• WORKING SET. In the most ideal and optimistic case, a

developer knows the set of entities needed for her task,
and navigates only the entities that she need to edit.

• WORKING SEQUENCE. In a more realistic case, a devel-
oper starts editing a set of entities, but some modifica-
tions (e.g., refactorings) may involve re-editing previously
modified entities, until a stable point is reached. This
corresponds to a sequence of edited entities, potentially
including duplicates.

Navigation Cost
• UNITARY. In the most ideal and optimistic case, the

developer reaches each entity of interest with a single
navigation, i.e., directly jumping to it, for example using
a spotlight-like interface, as the one depicted in Figure 4.
In other words, this model of navigation cost assumes
each navigation with a unitary cost.

• MAX COST. In the worst case scenario a developer opens
a new code browser for each navigation, thus the cost to
navigate each entity is its basic navigation cost.

Fig. 4. PHARO Spotlight-like Interface

IV. NAVIGATION EFFICIENCY: FACTS AND FICTION

We define the navigation efficiency as follows:

Navigation Efficiency =
Ideal Navigation Effort
Real Navigation Effort

where the real navigation effort is the number of navigation
events happening during a session and the ideal navigation
effort is a combination of edited program entities with their
navigation cost, e.g., the working sequence (or set) of edited
entities with their unitary (or max) navigation cost.

A. The Facts

We compute the navigation efficiency in different scenarios
combining the different interpretations of edited program
entities and navigation cost. Please note that in Table II and
Table III the headers Q1, Q2, and Q3 represent the Quartiles.

Working Set: Table II presents the navigation efficiency
considering only the the set of edited entities (i.e., working
set), for the three different variants of navigation cost.

TABLE II
NAVIGATION EFFICIENCY WITH WORKING SET

Q1 Q2 Q3 Avg.
Unitary Cost 0.018 0.032 0.060 0.051
Max Cost 0.073 0.129 0.238 0.206

UNITARY COST. On average, if we compare the real navi-
gation effort with the most ideal configuration, only 5.1% of
the navigation events performed by developers are required.
In other words, a developer is performing almost 19 times
more events than the ones needed in practice. The median (Q2)
reveals even worse news: In half of the sessions the navigation
efficiency drops to 3.2%, i.e., developer are performing more
than 30 times more events than needed.

MAX COST. On the other side, if we use the max naviga-
tion cost as a yardstick, the average navigation efficiency is
20.6%, meaning that developers are carrying on 4 times more
navigations than needed.

Working Sequence: A more realistic scenario considers the
sequence of edited entities as they appear in the interaction
histories. Table III presents the navigation efficiency in this
settings, for the three different variants of navigation cost.

TABLE III
NAVIGATION EFFICIENCY WITH WORKING SEQUENCE

Q1 Q2 Q3 Avg.
Unitary Cost 0.036 0.060 0.112 0.096
Max Cost 0.137 0.242 0.450 0.387

UNITARY COST. If we consider unitary navigation cost, the
efficiency of developers is 9.6%, which drops to 6% if we
consider the median value.

MAX COST. On the other extreme, with maximum cost,
the efficiency of developers raises to 38.7% on average, and
24.2% if we look at the median.



B. The Fiction — Summing Up

Our results provide empirical evidence that developers navi-
gate source code in an inefficient way. On average, in the more
realistic case (working sequence), developers perform 1.5 to
19 times more navigation events than the optimal settings. The
situation is even worse when looking at median values where
the number of wasted navigations reaches 3 to 30 times more
than the ones required by the current task.

We know there are several components that impact nav-
igation and make the ideal settings unfeasible. For example,
Röthlisberger et al., claimed that the navigation is is hampered
by the fact that conceptually related entities are distributed in a
very large software space and that relationships between them
are often hidden [5], [10]. Furthermore, the construction of a
mental model of a software system, requires that the developer
visits more program entities than the ones that she effectively
needs to modify (e.g., [1], [2]).

We believe that these results suggest that the gap between
the ideal and the real scenarios can be bridged by better
supporting the navigation inside the IDE. The next section
addresses how the related work started to mitigate this issue.

V. RELATED WORK

We believe our results empirically motivate the need of
reducing the gap between the ideal and the effective navigation
effort. In this section we discuss different approaches to
support the navigation through software in different ways.

Storey et al. developed SHRIMP, a flexible and customiz-
able environment to explore software systems [11]. SHRIMP
offers a catalogue of graph-based architectural visualizations
that integrate data from different sources to provide a more
structural exploration of code. Janzen and De Volder created a
tool to reduce the confusion while navigating code [12]. Their
approach consists in providing an explicit representation of the
exploration process by means of exploration paths. MYLYN
(formerly MYLAR), instead, assigns a degree-of-interest (DOI)
value to each source code artifact based on the interaction
data involving that entity, e.g., selections or modifications
[8]. MYLYN uses an episodic-memory inspired interface that
allows developers to see only the information they require for
the current task, potentially reducing the effort needed to reach
an entity of interest. Singer et al. developed NAVTRACKS,
a tool that keeps track of the navigation history of software
developers to supports browsing through software [6]. In a nut-
shell, every time a developer selects an artifacts, NAVTRACKS
shows a list of artifacts possibly related to it. SMARTGROUPS
is a tool that helps developers to focus on relevant code
entities for the current task [10]. SMARTGROUPS keeps track
of navigation and edit activities together with evolutionary
and runtime information to provide developers with a more
structured view of the entities needed to complete the current
task. Augustine et al. investigated how to comprehend and
maintain source code more efficiently by fostering structural
code navigation [13]. Their PRODET tool provides a navigable
visualization of the relevant parts of the call graph based on
the current context.

VI. CONCLUSIONS

Recording interaction data events is fundamental to derive
empirical evidence of phenomena that affect development,
like the difficulty of navigating complex software entities.
However, as data is raw, it must be interpreted according to
some reasonable model to be valuable and leveraged.

We presented a series of models, from completely ideal to
more realistic ones, interpreting interaction data to understand
how efficient is the navigation of software entities supporting
programming tasks in the PHARO IDE. According to our
models, data supports the need of better mechanisms to
navigate source code, as the efficiency of programmers is very
far from an ideal setting.

Future Work. We plan to leverage interaction data events
to provide developers with tools (e.g., recommender systems,
always-on interactive visualizations) to better support the nav-
igation of source code. In addition, we want to collect further
evidence by devising other models to interpret interaction data.

Acknowledgements. We gratefully acknowledge the sup-
port of the Swiss National Science Foundation (SNSF) for the
project “HI-SEA” (No. 146734).

REFERENCES

[1] T. D. LaToza, G. Venolia, and R. DeLine, “Maintaining Mental Models:
A Study of Developer Work Habits,” in Proceedings of ICSE 2006 (28th
Int’l Conference on Software Engineering), 2006, pp. 492–501.

[2] M. A. D. Storey, F. D. Fracchia, and H. A. Müller, “Cognitive Design El-
ements to Support the Construction of a Mental Model during Software
Exploration,” in IWPC-97, 2007, pp. 1–17.

[3] R. DeLine, M. Czerwinski, and G. G. Robertson, “Easing Program Com-
prehension by Sharing Navigation Data,” in Proceedings of VL/HCC
2005 (Symposium on Visual Languages and Human-Centric Computing),
2005, pp. 241–248.

[4] A. T. T. Ying and M. P. Robillard, “The Influence of the Task on
Programmer Behaviour,” in Proceedings of ICPC 2011 (19th Int’l
Conference on Program Comprehension), 2011, pp. 31–40.

[5] D. Röthlisberger, O. Nierstrasz, and S. Ducasse, “Autumn leaves: Curing
the window plague in IDEs,” Proceedings - Working Conference on
Reverse Engineering, WCRE, pp. 237–246, 2009.

[6] J. Singer, R. Elves, and M.-A. Storey, “Navtracks: Supporting navigation
in software maintenance,” in Proceedings of IWPC 2005 (13th Int’l
Workshop on Program Comprehension), 2005, pp. 325–334.

[7] R. Minelli, A. Mocci, and M. Lanza, “I Know What You Did Last
Summer – An Investigation of How Developers Spend Their Time,”
in Proceedings of ICPC 2015 (23rd Int’l Conference on Program
Comprehension), 2015, pp. 25–35.

[8] M. Kersten and G. C. Murphy, “Mylar: a degree-of-interest model for
IDEs,” in Proceedings of AOSD 2005 (4th Int’l Conference on Aspect-
Oriented Software Development), 2005, pp. 159–168.

[9] R. Minelli, A. Mocci, and M. Lanza, “The Plague Doctor: A Promising
Cure for the Window Plague,” in Proceedings of ICPC 2015 (23rd Int’l
Conference on Program Comprehension), 2015, pp. 182–185.

[10] D. Röthlisberger, O. Nierstrasz, and S. Ducasse, “SmartGroups: Focus-
ing on task-relevant source artifacts in IDEs,” in Proceedings of ICPC
2011 (19th Int’l Conference on Program Comprehension), 2011, pp.
61–70.

[11] M.-a. Storey, C. Best, and J. Michand, “Shrimp views: An interactive
environment for exploring java programs,” in Proceedings of IWPC 2001
(9th Int’l Workshop on Program Comprehension), 2001, pp. 1–4.

[12] D. Janzen and K. De Volder, “Navigating and querying code without
getting lost,” Proceedings of AOSD 2003 (2nd Int’l conference on
Aspect-oriented software development), pp. 178–187, 2003.

[13] V. Augustine, P. Francis, X. Qu, D. Shepherd, W. Snipes, C. Br, and
T. Fritz, “A Field Study on Fostering Structural Navigation with Prodet,”
in Proceedings of ICSE 2015 (37th Int’l Conference on Software
Engineering), 2015, pp. 229–238.


