
Using Discord Conversations as Program Comprehension Aid
Marco Raglianti, Csaba Nagy, Roberto Minelli, Michele Lanza

REVEAL @ Software Institute – USI, Lugano, Switzerland

ABSTRACT
Modern communication platforms used in software development
host daily conversations among developers and users about a wide
range of topics pertaining to software systems, such as language fea-
tures, APIs, code artifacts like classes and methods, design patterns,
usage examples, code reviews, bug reporting and fixing. Discord
servers are one of these virtual community hubs that have seen
a steep rise in popularity, as coordination and aggregation means
for communities of developers. Although Discord supports filter-
based search functionalities, the sheer volume, velocity, and small
granularity of single messages make it hard to find useful results,
let alone complete discussions revolving around particular themes.
One reason is that the concept of a discussion, which we call a
conversation, does not exist as an explicit concept. We argue that
extracting and analyzing such conversations can be used fruitfully
to aid program comprehension.

We present an approach that reconstructs the conversations that
take place on a software community Discord server, focusing on
software-related conversations: Our approach binds the conversa-
tions to the discussed artifacts. Leveraging our approach, we built
a tool that enables the interactive exploration of the conversations’
contents. We illustrate its usefulness through a number of examples
that highlight how the insights obtained serve as an additional form
of software documentation and program comprehension aid.

CCS CONCEPTS
• Software and its engineering→ Collaboration.

KEYWORDS
conversations, Discord, visualization
ACM Reference Format:
Marco Raglianti, Csaba Nagy, Roberto Minelli, Michele Lanza. 2022. Using
Discord Conversations as ProgramComprehension Aid. In 30th International
Conference on Program Comprehension (ICPC ’22), May 16–17, 2022, Virtual
Event, USA. ACM, New York, NY, USA, 5 pages. https://doi.org/10.1145/
3524610.3528388

1 INTRODUCTION
More than half a century ago, McLuhan’s seminal book “Under-
standing Media” started on the premise “the medium is the message”:
A communication medium itself, and not [only] the messages it
carries, should be the primary focus of study [15].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICPC ’22, May 16–17, 2022, Virtual Event, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9298-3/22/05. . . $15.00
https://doi.org/10.1145/3524610.3528388

Indeed, the very nature of a communication medium shapes
the contents it supports. In recent years the many types of media
that have been used by software communities have been comple-
mented, if not replaced, by a new one: rich-media instant messaging
platforms, such as Slack and Discord. These platforms are high-
throughput/high-volatility virtual hubs where developers discuss
daily about software. Gitter, Slack, and Discord are currently some
of the most used instant messaging platforms, and have also been
studied as possible data mining sources for software-related in-
formation [7, 11, 14, 19, 22, 24, 26]. They all lack semantic-based
searches in the documentation corpora they provide and they offer
at most basic functionalities to group messages in semantically
coherent chunks, such as Q&A threads. The message granularity
level is too fine-grained to efficiently help a developer quickly dis-
criminate between the content of interest and noise. Searching
answers for a specific task amounts to defining filtering criteria
(e.g., keywords or date intervals), retrieving messages, andmanually
exploring them one by one. This puts the burden of even finding
the limits of the region of interest on the developer, without any
form of summary to speed up the discrimination process in order
to find what is needed to accomplish a task. Many GitHub projects
adopted Discord as the primary communication tool among de-
velopment team members and their community. Unsurprisingly,
concerns about the long-term persistency of information shared on
Discord are already emerging:

“I can’t wait for the day Discord starts to cull old content [from
their content delivery networks] to save server space and for so much
information to just disappear.1”

As developers use these platforms to share knowledge and coor-
dinate projects [13], this integral part of the documentation land-
scape [21] constitutes an important form of crowd-sourced docu-
mentation for many languages, frameworks, and software projects
in general [8]. Besides preserving history, an imminent need is to
access and mine this documentation source. The volatility of infor-
mation is in the very nature of instant messaging applications, for
example, in the fact that only a handful of messages is visible on the
screen simultaneously, and that older ones quickly disappear from
a user’s point of view. This can be a matter of seconds or minutes
in a high-traffic channel. Countering the volatility could help in
the fruition of information in real-time and on-demand [23].

We propose an approach to mine knowledge in Discord servers’
crowd-sourced documentation to aid in program comprehension,
while providing an extra layer of persistence. We reconstruct con-
versations and elevate them to first-class concepts. We show how
discussed source code artifacts can be analyzed to extract knowl-
edge about them as a form of ad-hoc documentation. We provide a
visual representation of conversations that can be leveraged as a
form of summarization to gauge important aspects that could play a
role in exploration strategies. Finally, we outline the links between
source code and the natural language part of a conversation.

1See https://knockout.chat/thread/33251/1#post-1176126 [acc. April 29, 2022]

https://doi.org/10.1145/3524610.3528388
https://doi.org/10.1145/3524610.3528388
https://doi.org/10.1145/3524610.3528388
https://knockout.chat/thread/33251/1#post-1176126


ICPC ’22, May 16–17, 2022, Virtual Event, USA Marco Raglianti, Csaba Nagy, Roberto Minelli, Michele Lanza

2 BACKGROUND
Discord – Discord is a rich-media instant messaging, Voice over
Internet Protocol (i.e., VoIP), and digital distribution platform.

Users can communicate with messages containing text, images,
videos, files, embedded links, and emojis. It also supports streaming,
voice chat, and video conferencing.

A Discord server is the basic functional unit encapsulating the
concept of a community. Users in a Discord server can share mes-
sages in text channels and talk in voice channels. Channels are or-
ganized into categories. Many software development communities
have a public Discord server, with a permanent invite link (i.e., pub-
lished on the main website or GitHub project page) that allows
users to join the server and participate in activities.

Problem – Discord servers can host tens of thousands of users
and reach throughputs of several messages per second.2 Neverthe-
less, the Discord client for desktop can fit up to twenty one-line
messages on an average screen, which drops to just a handful on
mobile devices. People can easily miss longer conversations while
they are offline: Why and when did a conversation start? Hard to
tell at a glance. One needs to scroll to see all messages, and maybe
realize that nothing important happened.

Solution – Reconstructing summaries of conversations to show
appropriately chunked pieces of information to users. The first step
in this direction is to aggregate messages and reconstruct conver-
sations, adding meaningful information about the content (i.e., dis-
cussed topics) and its context (e.g., involved authors, conversation
length). This higher-level representation can help discriminate con-
versations of interest and easily overview their messages. It can
also be used for archival and retrieval.

Table 1: Statistics on the Pharo Discord server

Snapshot Date Feb 7 2022
Activity Span 5 years 153 days
# Sent Messages 197,009
# Members 3,176
# Active Authors 1,568

Case Study – We demonstrate our approach and present inter-
esting insights that emerged from the analysis of the Pharo Discord
server, the main communication hub for daily interactions of the
Pharo3 developer community. It has more than five years of his-
tory with ∼200k messages and ∼1.6k message authors (see Table 1).
The server has 67 channels organized into seven categories. The
following section presents examples from this server, including
conversations on the roassal channel in the LIBRARIES category.4

Table 2: Conversations on the Pharo Discord server

# Conversations 26,306
Average Conversation Span 49.8 minutes
Average Messages per Conversation 7.5
Longest Conversation # Messages 532

2The Programmer’s Hangout Discord server has more than 110,000 users with ca.
17,000 active users a day. See https://disboard.org/server/244230771232079873
[acc. April 29, 2022].
3See https://pharo.org [acc. April 29, 2022]
4Roassal is an agile interactive visualization framework for Pharo [5].

3 CONVERSATIONS
In most instant messaging applications, including Discord, the min-
imum unit of exchanged information is a message. We group mes-
sages that are temporally related to one another into conversations.
The boundaries of a conversation can be defined in various ways.
In our study, we use inter-message time intervals. Figure 1 shows
these intervals on the Pharo Discord server.

Figure 1: Time intervals between messages in all channels

We use a two hours threshold, retaining 87% of the intervals,
to reconstruct quasi-real-time conversations. This provides more
context, so a human observer could still disambiguate and manually
split without losing potentially related information if needed. The
impact of the chosen threshold on the accuracy of recommended
conversations about a topic remains to be evaluated.

On the Pharo Discord server, we found 26,306 conversations with
an average duration of 49.8 minutes and 7.5 messages (see Table 2).
Considering those with more than one message (16,482), we have
an average of 11.3 messages per conversation.

Messages Timeline and Conversation Patterns – Conversa-
tions can follow one another, they sometimes consist of sporadic
isolated messages, exist as short intensive bursts or longer dis-
cussions, possibly with pauses between bursts. We can see such
patterns in Figure 2a, where messages are placed in a 2D space ac-
cording to their timestamp. Each day is a column in the view from
left to right and each row represents an hour of the day. Messages
are represented as dots and connected when they fall within the
two-hour threshold. It is easy to spot clusters of overlapping mes-
sages, which represent quasi real-time conversations, with seconds
or minutes between them. When messages are linked over longer
distances, they indicate a semi-synchronous interaction, i.e., when
the inter-message interval is still below the threshold. Horizontal
gaps show inactivity periods.

Linearized Conversations and Message Types – A text mes-
sage can be a single emoji, a word, or sentences on multiple lines.
We represent the conversations as a linear sequence of messages to
provide a clearer view of the types that alternate in a typical flow.

In Figure 2b, we show examples of alternation patterns in conver-
sation sequences of varying lengths. 89.5% of messages (176,356) are
composed of a single line. This majority of one-line messages is not
surprising if we consider the typical interaction mode of Discord.
On a newline keystroke (i.e., Return) a message is sent. Only a spe-
cific combination (i.e., Shift-Return) generates a multi-line message.
While the average conversation length is low (7.5 messages), there
are many significant outliers (SD 19.7). For example, the longest
conversation counts 532 messages. Four authors help each other
with coding exercises and repository management issues.

https://disboard.org/server/244230771232079873
https://pharo.org


Using Discord Conversations as Program Comprehension Aid ICPC ’22, May 16–17, 2022, Virtual Event, USA

Conversations
No 

activity 
days

Isolated 
messages

May 2020
04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

00:00

23:59 Bursts23:00

(a) Partial message timeline where days are represented as columns and rows represent hours of the day

Single-word Single-line Multi-line File attachment
Conversation

(b) Linearized conversations and message types (May 19–24, 2020)

Figure 2: Two visualizations of message sequences in conversations for the roassal channel

Further work is needed to ensure that conversations in low-
traffic channels are not split. For example, timezone differences
may result in responses exceeding the given threshold. In high-
traffic channels, disentanglement of interleaving messages should
provide better accuracy in reconstructing minimal subsets about
the same topic [7]. Isolation or longer intervals between messages
could indicate questions that did not receive a timely answer. These
occurrences should be investigated separately. Our main focus is on
(quasi) real-time conversations and the source code they discuss.

4 CONVERSATIONS ABOUT SOURCE CODE
Figure 3 shows an example of a conversation between two au-
thors involving source code (fair usage consent has been explicitly
granted by authors whose real names or pictures appear in the
following examples). There are 1,485 conversations on the Pharo
Discord server about source code artifacts. While this specific ex-
ample is short, interestingly, the average number of messages per
conversation containing code is 29, about four times the overall
average (7.5). This indicates more activity around source code in
the Pharo Discord server.

To investigate discussions revolving around source code snippets,
we developed a custom view that shows the relevant contextual

Figure 3: Example of a conversation with source code

information in a condensed representation. Figure 4 shows a con-
versation consisting of 19 messages between three authors.

Serge Stinckwich sends a single comment suggesting what could
be implemented. The conversation revolves around four code snip-
pets (i.e., green rectangles in the center). We highlighted one to
show its content in a tooltip. The discussion focuses on how classes
could be used to create charts: RSChart, RSScatterPlot, and RSLine-
Plot (i.e., outer circle). Various methods are also visible (i.e., inner
circle). In particular addPlot: and addDecoration:, two methods of
RSChart. The visualization shows how this information can grasp
the topics of a conversation. This work should be extended to au-
tomate information extraction and provide a compact, meaningful
representation, e.g., with text summarization.

How? –We differentiate natural language and source code based
on the code blocks in the messages, as they can be marked by single
or triple back-ticks, like in Markdown.

In most cases, the language of a code block is specified for the
syntax highlighting, and we rely on it to extract the relevant source
code elements. Next, we tokenize the extracted code blocks.

Figure 4: Complex representation of a conversation with
authors, messages, code, referenced classes and methods



ICPC ’22, May 16–17, 2022, Virtual Event, USA Marco Raglianti, Csaba Nagy, Roberto Minelli, Michele Lanza

(a) Code tokens

(b) Natural language word-cloud

Figure 5: Example of a conversation between four authors
with code and natural language related features

In the case of Smalltalk, we do a full parsing to get an abstract
syntax tree. For other languages, we implemented a fallback solu-
tion based on ANTLR parsers. When we cannot parse the source
according to a given grammar, we rely only on the tokens gathered
through tokenization. Finally, we use heuristics, for example capi-
talized first letter, to extract class names from tokens (Figure 5a).

Why? – Our main focus is to aid program comprehension by
retrieving conversations about specific language features, APIs,
constructs, methods, and classes. Splitting natural language and
code allows us to treat the two differently. While for the natural
language content we provide word clouds to grasp the most im-
portant terms in the conversation (Figure 5b), source code classes
and methods are mapped to the relevant conversations. We can re-
trieve, for example, all the conversations containing code about the
RSSVGExporter class and find the conversation in Figure 5 whose
main topic is about exporting the Roassal canvas to be used in the
web (top-keywords in the word-cloud).

5 RELATEDWORK
Mutton and Shihab et al. have investigated IRC as an instant mes-
saging platform, where the only supported medium is text mes-
sages [16, 25]. Alkadhi et al. mined Atlassian HipChat [2] and
IRC [3] to extract development decisions rationale from developer
discussions. Ehsan et al. extracted discussion threads from Git-
ter [11] and analyzed them for development problems resolution.

Parra et al. manually labeled a dataset of 10,000 Gitter messages
from 10 developer communities to foster future research in this
field [19]. They analyzed the performances of machine and deep
learning algorithms for intent prediction on their dataset [18]. Lin
et al. explored the role of Slack in software developer teams [14].
Chatterjee et al. mined and disentangled conversations in Slack [7]
providing a curated dataset for further research in this direction [6].
Their approach aimed at comparing the result to Q&A websites
like StackOverflow, trying to exploit previous research on these
platforms for a different medium. Stray et al. investigated the use
of Slack for coordination and communication in agile development
teams [27]. Overall, Discord remains unexplored [22].

While most of the related works focus on semantically related
discussion threads, our work is more about (quasi-)real-time in-
teractions. Conversations lasting over a day are still meaningful,
but they are handled better by asynchronous media (e.g., mailing
lists, Q&A websites, forums), which have been extensively studied,
for example by Abreu and Premraj [1], Bacchelli et al. [4], Guzzi
et al. [12], and Di Sorbo et al. [9] for e-mails, Parnin et al. [17] and
Ponzanelli et al. [20] for StackOverflow, and Di Sorbo et al. [10] for
mobile app reviews. They dealt with similar issues in extracting
information from developer communications. The different velocity,
granularity, and features of modern instant messaging platforms
require building higher-level, source-independent concepts.

6 CONCLUSIONS AND FUTUREWORK
Instant messaging applications are sources with high throughput
and volatility. Massive adoption by developer communities makes
them precious and fragile containers of ad-hoc crowd-sourced soft-
ware documentation. Mining and persisting them is fundamental.

In this paper, we reconstructed conversations in Discord as a first
class concept, and presented an approach based on word-clouds
and source code parsing to deal with their twofold nature. The
approach could be adapted to other instant messaging platforms
such as Slack and Gitter, e.g., by supporting different APIs for ex-
tracting messages and content. There are also limitations in the
available history of some communities (e.g., Slack’s free tier limit to
the latest 10k messages). Different platforms could provide ways to
retrieve more code blocks, even outside triple back-ticks or without
explicit syntax highlighting. Nevertheless, we plan to explore reg-
ular expressions and machine learning techniques to pre-process
messages and identify source code fragments that could be linked
to conversations. We also plan to improve disentanglement of con-
versations. For example, we could reduce the probability of mixing
topics and unrelated features in high traffic channels by splitting
and merging conversations based on topic similarity.

Overall, the resulting semantic search capabilities of our ap-
proach, augmented by the contextualized visual summarization,
help in finding conversations of interest about a specific topic. This
is the first step towards exploiting the potential of mining Discord
for program comprehension.

ACKNOWLEDGMENTS
We gratefully acknowledge the support of the Swiss National Sci-
ence Foundation and the Fonds de la Recherche Scientifique for the
joint Lead Agency project “INSTINCT” (SNF Project No. 190113).



Using Discord Conversations as Program Comprehension Aid ICPC ’22, May 16–17, 2022, Virtual Event, USA

REFERENCES
[1] Roberto Abreu and Rahul Premraj. 2009. How Developer Communication Fre-

quency Relates to Bug Introducing Changes. In Proceedings of IWPSE-EVOL 2009
(ERCIM Workshop on Software Evolution and International Workshop on Principles
of Software Evolution). ACM, 153–158.

[2] Rana Alkadhi, Teodora Lata, Emitza Guzmany, and Bernd Bruegge. 2017. Ratio-
nale in Development Chat Messages: An Exploratory Study. In Proceedings of
MSR 2017 (International Conference on Mining Software Repositories). IEEE/ACM,
436–446.

[3] Rana Alkadhi, Manuel Nonnenmacher, Emitza Guzman, and Bernd Bruegge.
2018. How do Developers Discuss Rationale?. In Proceedings of SANER 2018
(International Conference on Software Analysis, Evolution and Reengineering). IEEE,
357–369.

[4] Alberto Bacchelli, Tommaso Dal Sasso, Marco D’Ambros, and Michele Lanza.
2012. Content Classification of Development Emails. In Proceedings of ICSE 2012
(International Conference on Software Engineering). IEEE, 375–385.

[5] Alexandre Bergel. 2022. Agile Visualization with Pharo – Crafting Interactive
Visual Support Using Roassal. Apress, Berkeley, CA.

[6] Preetha Chatterjee, Kostadin Damevski, Nicholas A. Kraft, and Lori Pollock. 2020.
Software-Related Slack Chats with Disentangled Conversations. In Proceedings
of MSR 2020 (International Conference on Mining Software Repositories). ACM,
588–592.

[7] Preetha Chatterjee, Kostadin Damevski, Lori Pollock, Vinay Augustine, and
Nicholas A Kraft. 2019. Exploratory Study of Slack Q&A Chats as a Mining
Source for Software Engineering Tools. In Proceedings of MSR 2019 (International
Conference on Mining Software Repositories). IEEE/ACM, 490–501.

[8] Camila Mariane Costa Silva. 2020. Reusing Software Engineering Knowledge
from Developer Communication. In Proceedings of ESEC/FSE (European Software
Engineering Conference and Symposium on the Foundations of Software Engineering.
ACM, 1682–1685.

[9] Andrea Di Sorbo, Sebastiano Panichella, Corrado A. Visaggio, Massimiliano
Di Penta, Gerardo Canfora, and Harald C. Gall. 2015. Development Emails
Content Analyzer: Intention Mining in Developer Discussions. In Proceedings
of ASE 2015 (International Conference on Automated Software Engineering). IEEE,
12–23.

[10] Andrea Di Sorbo, Sebastiano Panichella, Corrado A. Visaggio, Massimiliano Di
Penta, Gerardo Canfora, and Harald C. Gall. 2021. Exploiting Natural Language
Structures in Software Informal Documentation. IEEE Transactions on Software
Engineering 47, 8 (2021), 1587–1604.

[11] Osama Ehsan, Safwat Hassan, Mariam El Mezouar, and Ying Zou. 2020. An
Empirical Study of Developer Discussions in the Gitter Platform. Transactions on
Software Engineering and Methodology 30, 1 (2020), 1–39.

[12] Anja Guzzi, Alberto Bacchelli, Michele Lanza, Martin Pinzger, and Arie
Van Deursen. 2013. Communication in Open Source Software Development
Mailing Lists. In Proceedings of MSR 2013 (Working Conference on Mining Software
Repositories). IEEE, 277–286.

[13] Tuomas Jaanu, Maria Paasivaara, and Casper Lassenius. 2012. Near-synchronicity
and Distance: Instant Messaging as a Medium for Global Software Engineering. In
Proceedings of GSE 2012 (International Conference on Global Software Engineering).
IEEE, 149–153.

[14] Bin Lin, Alexey Zagalsky, Margaret-Anne Storey, and Alexander Serebrenik.
2016. Why Developers Are Slacking Off: Understanding How Software Teams
Use Slack. In Proceedings of CSCW/SCC 2016 (Conference on Computer Supported
Cooperative Work and Social Computing Companion). ACM, 333–336.

[15] Marshall McLuhan. 1964. Understanding Media. Gingko Press.
[16] Paul Mutton. 2004. Inferring and Visualizing Social Networks on Internet Relay

Chat. In Proceedings of IV 2004 (International Conference on Information Visualisa-
tion). IEEE Computer Society, 35–43.

[17] Chris Parnin, Christoph Treude, Lars Grammel, and Margaret-Anne Storey. 2012.
Crowd Documentation: Exploring the Coverage and the Dynamics of API Discussions
on Stack Overflow. Technical Report. Georgia Institute of Technology.

[18] Esteban Parra, Mohammad Alahmadi, Ashley Ellis, and Sonia Haiduc. 2022. A
Comparative Study and Analysis of Developer Communications on Slack and
Gitter. Empirical Software Engineering 27, 2 (2022), 1–33.

[19] Esteban Parra, Ashley Ellis, and Sonia Haiduc. 2020. GitterCom: A Dataset of
Open Source Developer Communications in Gitter. In Proceedings of MSR 2020
(International Conference on Mining Software Repositories). ACM, 563–567.

[20] Luca Ponzanelli, Gabriele Bavota, Massimiliano Di Penta, Rocco Oliveto, and
Michele Lanza. 2014. Mining StackOverflow to Turn the IDE into a Self-Confident
Programming Prompter. In Proceedings of MSR 2014 (Working Conference on
Mining Software Repositories). IEEE/ACM, 102–111.

[21] Marco Raglianti. 2022. Topology of the Documentation Landscape. In Proceed-
ings of ICSE 2022 Companion (International Conference on Software Engineering
Companion). ACM.

[22] Marco Raglianti, Roberto Minelli, Csaba Nagy, and Michele Lanza. 2021. Visu-
alizing Discord Servers. In Proceedings of VISSOFT 2021 (Working Conference on
Software Visualization). IEEE, 150–154.

[23] Martin P. Robillard, Andrian Marcus, Christoph Treude, Gabriele Bavota, Oscar
Chaparro, Neil Ernst, Marco Aurélio Gerosa, Michael Godfrey, Michele Lanza,
Mario Linares-Vásquez, Gail C. Murphy, Laura Moreno, David Shepherd, and
Edmund Wong. 2017. On-demand Developer Documentation. In Proceedings of
ICSME 2017 (International Conference on Software Maintenance and Evolution).
IEEE, 479–483.

[24] Lin Shi, Xiao Chen, Ye Yang, Hanzhi Jiang, Ziyou Jiang, Nan Niu, and Qing
Wang. 2021. A First Look at Developers’ Live Chat on Gitter. In Proceedings of
ESEC/FSE 2021 (European Software Engineering Conference and Symposium on the
Foundations of Software Engineering). ACM, 391–403.

[25] Emad Shihab, Zhen Ming Jiang, and Ahmed E Hassan. 2009. On the Use of
Internet Relay Chat (IRC) Meetings by Developers of the GNOME GTK+ Project.
In Proceedings of MSR 2009 (International Working Conference on Mining Software
Repositories). IEEE, 107–110.

[26] Viktoria Stray and Nils Brede Moe. 2020. Understanding Coordination in Global
Software Engineering: A Mixed-Methods Study on the use of Meetings and Slack.
Journal of Systems and Software 170 (2020), 110717.

[27] Viktoria Stray, Nils Brede Moe, and Mehdi Noroozi. 2019. Slack Me If You Can!
Using Enterprise Social Networking Tools in Virtual Agile Teams. In Proceedings of
ICGSE 2019 (International Conference on Global Software Engineering). ACM/IEEE,
111–121.


	Abstract
	1 Introduction
	2 Background
	3 Conversations
	4 Conversations About Source Code
	5 Related Work
	6 Conclusions and Future Work
	Acknowledgments
	References

